DOI QR코드

DOI QR Code

ERK Activation by Fucoidan Leads to Inhibition of Melanogenesis in Mel-Ab Cells

  • Song, Yu Seok (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Balcos, Marie Carmel (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Yun, Hye-Young (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Baek, Kwang Jin (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Kwon, Nyoun Soo (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Kim, Myo-Kyoung (Thomas J. Long School of Pharmacy, University of the Pacific) ;
  • Kim, Dong-Seok (Department of Biochemistry, Chung-Ang University College of Medicine)
  • Received : 2014.08.30
  • Accepted : 2014.12.01
  • Published : 2015.01.30

Abstract

Fucoidan, a fucose-rich sulfated polysaccharide derived from brown seaweed in the class Phaeophyceae, has been widely studied for its possible health benefits. However, the potential of fucoidan as a possible treatment for hyperpigmentation is not fully understood. This study investigated the effects of fucoidan on melanogenesis and related signaling pathways using Mel-Ab cells. Fucoidan significantly decreased melanin content. While fucoidan treatment decreased tyrosinase activity, it did not do so directly. Western blot analysis indicated that fucoidan downregulated microphthalmia-associated transcription factor and reduced tyrosinase protein expression. Further investigation showed that fucoidan activated the extracellular signal-regulated kinase (ERK) pathway, suggesting a possible mechanism for the inhibition of melanin synthesis. Treatment with PD98059, a specific ERK inhibitor, resulted in the recovery of melanin production. Taken together, these findings suggest that fucoidan inhibits melanogenesis via ERK phosphorylation.

Keywords

References

  1. Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol. 2011;49:331-336. https://doi.org/10.1016/j.ijbiomac.2011.05.009
  2. Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011;9: 2106-2130. https://doi.org/10.3390/md9102106
  3. Song YS, Li H, Balcos MC, Yun HY, Baek KJ, Kwon NS, Choi HR, Park KC, Kim DS. Fucoidan promotes the reconstruction of skin equivalents. Korean J Physiol Pharmacol. 2014;18:327-331. https://doi.org/10.4196/kjpp.2014.18.4.327
  4. Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev Dermatol. 2011;6:97-108. https://doi.org/10.1586/edm.10.70
  5. Schiaffino MV. Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol. 2010;42:1094-1104. https://doi.org/10.1016/j.biocel.2010.03.023
  6. Speeckaert R, Van Gele M, Speeckaert MM, Lambert J, van Geel N. The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res. 2014;27:512-524. https://doi.org/10.1111/pcmr.12235
  7. Gilchrest BA, Park HY, Eller MS, Yaar M. Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol. 1996;63:1-10. https://doi.org/10.1111/j.1751-1097.1996.tb02988.x
  8. Vachtenheim J, Borovansky J. "Transcription physiology" of pigment formation in melanocytes: central role of MITF. Exp Dermatol. 2010;19:617-627. https://doi.org/10.1111/j.1600-0625.2009.01053.x
  9. Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J Invest Dermatol. 2007;127:751-761. https://doi.org/10.1038/sj.jid.5700683
  10. Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991;5:2902-2909. https://doi.org/10.1096/fasebj.5.14.1752358
  11. Bertolotto C, Bille K, Ortonne JP, Ballotti R. In B16 melanoma cells, the inhibition of melanogenesis by TPA results from PKC activation and diminution of microphthalmia binding to the M-box of the tyrosinase promoter. Oncogene. 1998;16:1665-1670. https://doi.org/10.1038/sj.onc.1201685
  12. Kim EH, Kim MK, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Menadione (Vitamin K3) decreases melanin synthesis through ERK activation in Mel-Ab cells. Eur J Pharmacol. 2013; 718:299-304. https://doi.org/10.1016/j.ejphar.2013.08.018
  13. Ahn MJ, Hur SJ, Kim EH, Lee SH, Shin JS, Kim MK, Uchizono JA, Whang WK, Kim DS. Scopoletin from Cirsium setidens Increases Melanin Synthesis via CREB Phosphorylation in B16F10 Cells. Korean J Physiol Pharmacol. 2014;18:307-311. https://doi.org/10.4196/kjpp.2014.18.4.307
  14. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80:179-185. https://doi.org/10.1016/0092-8674(95)90401-8
  15. Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994;77:841-852. https://doi.org/10.1016/0092-8674(94)90133-3
  16. Sale EM, Atkinson PG, Sale GJ. Requirement of MAP kinase for differentiation of fibroblasts to adipocytes, for insulin activation of p90 S6 kinase and for insulin or serum stimulation of DNA synthesis. EMBO J. 1995;14:674-684.
  17. Alesiani D, Cicconi R, Mattei M, Bei R, Canini A. Inhibition of Mek 1/2 kinase activity and stimulation of melanogenesis by 5,7-dimethoxycoumarin treatment of melanoma cells. Int J Oncol. 2009;34:1727-1735.
  18. Li H, Kim J, Hahn HG, Yun J, Jeong HS, Yun HY, Baek KJ, Kwon NS, Min YS, Park KC, Kim DS. KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model. Korean J Physiol Pharmacol. 2014;18:249-254. https://doi.org/10.4196/kjpp.2014.18.3.249
  19. Kim DS, Park SH, Kwon SB, Park ES, Huh CH, Youn SW, Park KC. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res. 2006;19:146-153. https://doi.org/10.1111/j.1600-0749.2005.00287.x
  20. Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci. 2003;116:1699-1706. https://doi.org/10.1242/jcs.00366
  21. Oka M, Nagai H, Ando H, Fukunaga M, Matsumura M, Araki K, Ogawa W, Miki T, Sakaue M, Tsukamoto K, Konishi H, Kikkawa U, Ichihashi M. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J Invest Dermatol. 2000;115:699-703. https://doi.org/10.1046/j.1523-1747.2000.00095.x
  22. Khaled M, Larribere L, Bille K, Ortonne JP, Ballotti R, Bertolotto C. Microphthalmia associated transcription factor is a target of the phosphatidylinositol-3-kinase pathway. J Invest Dermatol. 2003;121:831-836. https://doi.org/10.1046/j.1523-1747.2003.12420.x
  23. Kim BS, Park JY, Kang HJ, Kim HJ, Lee J. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling. Biochem Biophys Res Commun. 2014;450:1333-1338. https://doi.org/10.1016/j.bbrc.2014.06.137
  24. Dooley TP, Gadwood RC, Kilgore K, Thomasco LM. Development of an in vitro primary screen for skin depigmentation and antimelanoma agents. Skin Pharmacol. 1994;7:188-200. https://doi.org/10.1159/000211294
  25. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull. 1996;19:1518-1520. https://doi.org/10.1248/bpb.19.1518
  26. Busca R, Bertolotto C, Ortonne JP, Ballotti R. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J Biol Chem. 1996;271: 31824-31830. https://doi.org/10.1074/jbc.271.50.31824
  27. Wang N, Hebert DN. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. Pigment Cell Res. 2006;19:3-18. https://doi.org/10.1111/j.1600-0749.2005.00288.x
  28. Kim EH, Jeong HS, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Geranylgeranylacetone inhibits melanin synthesis via ERK activation in Mel-Ab cells. Life Sci. 2013;93:226-232. https://doi.org/10.1016/j.lfs.2013.06.008
  29. Raghavendran HB, Sathivel A, Devaki T. Defensive nature of Sargassum polycystum (Brown alga) against acetaminopheninduced toxic hepatitis in rats: role of drug metabolizing microsomal enzyme system, tumor necrosis factor-alpha and fate of liver cell structural integrity. World J Gastroenterol. 2006;12:3829-3834. https://doi.org/10.3748/wjg.v12.i24.3829
  30. Chan YY, Kim KH, Cheah SH. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol. 2011;137: 1183-1188. https://doi.org/10.1016/j.jep.2011.07.050
  31. Wang ZJ, Si YX, Oh S, Yang JM, Yin SJ, Park YD, Lee J, Qian GY. The effect of fucoidan on tyrosinase: computational molecular dynamics integrating inhibition kinetics. J Biomol Struct Dyn. 2012;30:460-473. https://doi.org/10.1080/07391102.2012.682211
  32. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998;142:827-835. https://doi.org/10.1083/jcb.142.3.827
  33. Lee HE, Kim EH, Choi HR, Sohn UD, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase. Korean J Physiol Pharmacol. 2012;16:287-291. https://doi.org/10.4196/kjpp.2012.16.4.287
  34. Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  35. Dent P. Crosstalk between ERK, AKT, and cell survival. Cancer Biol Ther. 2014;15:245-246. https://doi.org/10.4161/cbt.27541
  36. Ocana A, Vera-Badillo F, Al-Mubarak M, Templeton AJ, Corrales-Sanchez V, Diez-Gonzalez L, Cuenca-Lopez MD, Seruga B, Pandiella A, Amir E. Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One. 2014;9:e95219. https://doi.org/10.1371/journal.pone.0095219
  37. Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, Bertolotto C. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J Biol Chem. 2002;277:33690-33697. https://doi.org/10.1074/jbc.M202939200
  38. Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher DE. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 2000;14:301-312.
  39. Yoon HS, Lee SR, Ko HC, Choi SY, Park JG, Kim JK, Kim SJ. Involvement of extracellular signal-regulated kinase in nobiletin-induced melanogenesis in murine B16/F10 melanoma cells. Biosci Biotechnol Biochem. 2007;71:1781-1784. https://doi.org/10.1271/bbb.70088

Cited by

  1. Melanoma and brown seaweed: an integrative hypothesis vol.29, pp.2, 2017, https://doi.org/10.1007/s10811-016-0979-0
  2. Ethanolic extract from Sargassum serratifolium attenuates hyperpigmentation through CREB/ERK signaling pathways in α-MSH-stimulated B16F10 melanoma cells vol.29, pp.4, 2015, https://doi.org/10.1007/s10811-017-1120-8
  3. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms vol.15, pp.10, 2017, https://doi.org/10.3390/md15100297
  4. Effects of Extremely Low Frequency Electromagnetic Fields on Melanogenesis through p-ERK and p-SAPK/JNK Pathways in Human Melanocytes vol.18, pp.10, 2015, https://doi.org/10.3390/ijms18102120
  5. Anti-microbial Activity and Anti-inflammatory Effects of Fucoidan Extracts vol.16, pp.2, 2015, https://doi.org/10.20402/ajbc.2017.0171
  6. In vitro inhibitory effect of sulfated galactans isolated from red alga Gracilaria fisheri on melanogenesis in B16F10 melanoma cells vol.30, pp.4, 2018, https://doi.org/10.1007/s10811-018-1469-3
  7. Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health vol.16, pp.11, 2015, https://doi.org/10.3390/md16110459
  8. Algal polysaccharides: potential bioactive substances for cosmeceutical applications vol.39, pp.1, 2015, https://doi.org/10.1080/07388551.2018.1503995
  9. Leathesia difformis Extract Inhibits α-MSH-Induced Melanogenesis in B16F10 Cells via Down-Regulation of CREB Signaling Pathway vol.20, pp.3, 2015, https://doi.org/10.3390/ijms20030536
  10. Downregulation of TUG1 promotes melanogenesis and UVB‐induced melanogenesis vol.28, pp.6, 2015, https://doi.org/10.1111/exd.13929
  11. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study vol.18, pp.3, 2019, https://doi.org/10.1111/jocd.12900
  12. Potential Use of Seaweed Bioactive Compounds in Skincare—A Review vol.17, pp.12, 2019, https://doi.org/10.3390/md17120688
  13. Phytochemical Analysis and Wound Healing Potential of Ethanol Extract of Sea Mustard and Sea Mustard Sporophyll vol.25, pp.4, 2015, https://doi.org/10.15616/bsl.2019.25.4.313
  14. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics vol.26, pp.17, 2021, https://doi.org/10.3390/molecules26175313