DOI QR코드

DOI QR Code

Evaluation of Photoneutron by Hypofractionated Radiotherapy

소분할 방사선치료 방식에 따른 광중성자 평가

  • 박은태 (인제대학교 부산백병원 방사선종양학과) ;
  • 이득희 (인제대학교 부산백병원 방사선종양학과) ;
  • 강세식 (부산가톨릭대학교 방사선학과)
  • Received : 2015.07.07
  • Accepted : 2015.08.19
  • Published : 2015.12.28

Abstract

Hypofractionated radiotherapy prescribes high dose once. Due to this there's a bad point that patients are exposed much dose in normal organ. But recently the study making up for a limit is continuing. Cause of preference of this kind of development of therapy technic and high-energy photon beam, patients can be exposed to additional radiation. Because photoneutron is created by photonuclear reaction. So, in this study I measured photoneutron and analyzed by DVH amounts of radiation from the treatment plan that was used to acute, metastatic pelvis cancer patients who was treated by hypofractionated radiotherapy applied IMRT. As a result, incidence of photoneutron based on the hypofractionated radiotherapy was not a big difference in proportion to the dose fractionation. Protective effects of normal organ by hypofractionated radiotherapy applying IMRT is relatively high compared to 3D CRT but also photoneutron was in created. So a proper treatment plan and a best therapy should be considerated.

소분할 방식을 이용한 방사선치료는 한번에 대선량을 처방하게 된다. 이로 인해 정상조직에도 많은 선량이 조사되는 단점이 있지만 최근에는 IMRT 방식을 적용함으로써 그 한계점을 보완하는 연구가 이어지고 있다. 그러나 이런 치료기술의 발전과 고에너지 광자선을 선호함으로써, 광핵반응에 의한 광중성자가 생성되어 환자에게 부가적인 피폭을 일으키게 된다. 이에 본 연구는 급성 골반 뼈 전이암으로 IMRT 치료기법을 적용하여 소분할치료를 받은 환자의 치료계획을 대상으로, 치료기법 및 분할기법에 따른 선량을 DVH를 이용하여 분석하고 그에 따른 광중성자를 측정하였다. 그 결과, 분할기법에 따른 광중성자의 발생률은 처방선량에 비례하여 차이가 미미한 것으로 나타났다. 그리고 IMRT를 이용한 소분할치료 시 정상조직의 보호효과는 3D CRT에 비해 상대적으로 높게 나타났지만, 광중성자도 증가함으로써 적절한 치료계획의 선택과 최적의 방식을 고려해야 할 것이다.

Keywords

References

  1. National Cancer Information Center(www.cancer.go.kr), 2014.
  2. J. S. Lee and J. N. Kim, "Efficient Data Acquisition Technique for Clinical Application of Multileaf Collimator," J. of Contents Association, Vol.8, No.11, pp.182-188, 2008.
  3. B. S. Park, J. H. Ahn, D. Y. Kwon, J. M. Seo, and K. W. Song, "The Effect of Photoneutron Dose in High Energy Radiotherapy," The journal of the korean society for radiotherapeutic technology, Vol.25, No.1, pp.9-14, 2013.
  4. L. J. Verhey, "Comparison of three-dimensional conformal radiation therapy and intensity modulated radiation therapy systems," Semin Radiat Oncol, Vol.9, No.1, pp.78-98, 1999. https://doi.org/10.1016/S1053-4296(99)80056-3
  5. S. H. Benedict, R. M. Cardinale, Q. Wu. R. D. Zwicker, W. C. Broaddus, and R. Mohan, "Intensity-modulated stereotatic radiosurgery using dynamic micro-multileaf collimation," Int. J Radiat Oncol Biol Phys, Vol.50, No.3, pp.751-758, 2001. https://doi.org/10.1016/S0360-3016(01)01487-0
  6. G. Budgell, "Intensity modulated radiotherapy (IMRT) and introduction," Radiography, Vol.8, No.4, pp.241-249, 2000. https://doi.org/10.1053/radi.2002.0390
  7. S. S. Kang, I. H. Go, G. J. Kim, S. H. Kim, and Y. S. Kim, Radiation Therapeutics 3rd edition, Cheong-gu munhwasa, 2014.
  8. J. S. Levinger and H. A. Bethe, "Neutron yield from the nuclear photon effect," Phys Rev, Vol.9, No.1, pp.221-222, 1989.
  9. F. D'Errico, R. Nath, G. Silvano, and L. Tana, "In vivo neutron dosimetry during hish-energy Bremsstrahlung radiotherapy," Int J radiation Oncology Biol Phys, Vol.9, No.41, pp.1185-1192, 1998.
  10. E. J. Hall and C. Wuu, "Radiation-induced second cancers the impact of 3D-CRT and IMRT," Int J radiation Oncology Biol Phys, Vol.6, No.56, pp.83-88, 2003.
  11. S. F. Kry, M. Salehpour, D. S. Followill, M. Stovall, D. A. Kuban, R. A. White, and I. I. Rosen, "Out-of-field photon and neutron dose equivalents from step-and shoot intensity-modulated radiation therapy," Int J Radiation Oncology Biol Phys, Vol.4, No.62, pp.1204-1216, 2005.
  12. D. S. Kim, J. M. Kim, H. S. Lee, R. S. Lim, and Y. H. Kim, "A Study on the Neutron in Radiation Treatment System and Related Facility," The journal of the korean society for radiotherapeutic technology, Vol.17, No.2, pp.141-145, 2005.
  13. E. T. Park, S. J. Ko, J. H. Kim, and S. S. Kang, "Evaluation of Photoneutron Energy Distribution in the Radiotherapy Room," Journal of radiological science and technology, Vol.37, No.3, pp.223-231, 2014.
  14. Nuclear Safety and Security Commission, Nuclear Safety Act, 2014.
  15. N. J. Ji and S. M. Ahn, "Comparative study on Measured Radiation by Neutron Surveymeters in a Cyclotron Room," J. of Contents Association, Vol.15, No.1, pp.331-337, 2015. https://doi.org/10.5392/JKCA.2015.15.01.331
  16. R. D. Timmerman, "An overview of hypofractionation and introduction to this issue of seminars in radiation oncology," Semin. Radiat. Oncol, Vol.18, No.4, pp.215-222, 2008. https://doi.org/10.1016/j.semradonc.2008.04.001
  17. Y. J. Kim, J. S. Lee, S. I. Hong, and H. J. Ko, "A Comparison between Three Dimensional Radiation Therapy and Intensity Modulated Radiation Therapy on Prostate Cancer," J. Korean. Soc. Radio, Vol.7, No.6, pp.409-414, 2013. https://doi.org/10.7742/jksr.2013.7.6.409
  18. J. N. Song, Y. J. Kim, and S. I. Hong, "The Usability Analysis of 3D-CRT, IMRT, Tomotherpy RadiationTherapy on Nasopharyngeal Cancer," Journal of the Korean Society of Radiology, Vol.6, No.5, pp.365-371, 2012. https://doi.org/10.7742/jksr.2012.6.5.365
  19. G. Y. Chai, Y. K. Lim, K. M. Kang, B. G. Jeong, I. B. Ha, K. B. Park, J. M. Jung, and D. W. Kim, "Comparison of Three- and Four-dimensional Robotic Radiotherapy Treatment Plans for Lung Cancers," The Journal of the Korean soceity for therapeutic radiology and oncology, Vol.28, No.4, pp.238-248, 2010. https://doi.org/10.3857/jkstro.2010.28.4.238
  20. O. N. Yang and C. H. Lim, "Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators," Journal of radiological science and technology, Vol.35, No.4, pp.335-342, 2012.
  21. L. donadille, F. Trompier, and I.robbes et al, "Radiation protection of workers associated with secondary neutrons produced by medical linear accelerators," Radiation Measurements, Vol.43, No.2-6, pp.939-943, 2008. https://doi.org/10.1016/j.radmeas.2008.01.018