참고문헌
- 박대우, "국가사이버보안정책에서 해킹에 대한 소고," 한국정보보호학회논문지, 제21권, 제6호, 2011, pp. 24-41.
- Wu, S. and Yen, E., "Data Mining-based Intrusion Detectors," Expert Systems with Applications, Vol. 36, No. 3, 2009, pp. 5605-5612. https://doi.org/10.1016/j.eswa.2008.06.138
- Bace, R. and Mell, P., NIST Special Publication on Intrusion Detection Systems, 2001.
- Singaraju, S., and Kalpana, P., A Precise Survey on Intrusion Detection Systems, 2012.
- 신대철.김홍윤, "침입탐지 알고리즘 성능 최적화 및 평가 방법론 개발," 디지털산업정보학회논문지, 제8권, 제1호, 2012, pp. 125-137.
- 양환석, "프로토콜 기반 분산 침입탐지시스템 설계 및 구현," 디지털산업정보학회논문지, 제8권, 제1호, 2012, pp. 81-87.
- Beigh, B. M. and Peer, M. A. "Intrusion Detection and Prevention System: Classification and Quick Review," ARPN Journal of Science and Technology, Vol. 2, No. 7, 2012, pp. 661-675.
- Kumar, Y. and Dhawan, S., "A Review on Information Flow in Intrusion Detection System," International Journal of Computational Engineering and Management, Vol. 15, No. 1, 2012, pp.91-96.
- Denning, D. E., "An Intrusion-Detection Model," IEEE Transaction on Software Engineering, Vol. 13, No. 2, 1987, pp. 222-232.
- Nguyen, H. A. and Choi. D., "Application of Data Mining to Network Intrusion Detection: Classifier Selection Model," Challenges for Next Generation Network Operations and Service Management -Lecture Notes in Computer Science, Vol. 5297, 2008, pp. 399-408.
- Jalil, K. A., Kamarudin, M. H., and Masrek, M. N., "Comparison of Machine Learning Algorithms Performance in Detecting Network Intrusion," Networking and Information Technology 2010 International Conference, 2010, pp. 221-226.
- Osareh, A. and Shadgar, B., "Intrusion Detection in Computer Networks Based on Machine Learning Algorithms," International Journal of Computer Science and Network Security, Vol. 8, No. 11, 2008, pp. 15-23.
- Ibrahim, H. E., Badr, S. M., and Shaheen, M. A. "Phases vs. Levels using Decision Trees for Intrusion Detection Systems," International Journal of Computer Science and Information Security, Vol. 10, No. 8, 2012, pp. 1-7.
- Quinlan, J. R., C4.5 : Programs for Machine Learning, Morgan Kaufmann Publishers, 1992.
- McCulloch, Warren S., and Walter Pitts., "A logical Calculus of the Ideas Immanent in Nervous Activity," The Bulletin of Mathematical Biophysics, Vol. 5, No. 4, 1943, pp. 115-133. https://doi.org/10.1007/BF02478259
- Rosenblatt, F., Principles of Neurodynamics. 1962.
- Widrow, B. and Hoff, M. E., Adaptive Switching Circuits. In: Neurocomputing: Foundations of Research. MIT Press, 1988.
- Minsky, M. and Papert, S., Perceptrons, MIT Press, 1969.
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning Internal Representations by Error Propagation. Institute for Cognitive Science, University of California, San Diego, 1985.
- Ahn, B. H., "Forward Additive Neural Network Models," PhD dissertation, Kent State University, Kent, OH, USA, 1996.
- 이한성, 임영희, 박주영, 박대희., "SVM 클러스터링 기반 적응형 침입탐지 시스템," 퍼지 및 지능 시스템학회논문지, 제13권, 제2호, 2003, pp. 237-242.
- Zarrabi, A. and Zarrabi, A., "Internet Intrusion Detection System Service in a Cloud," International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, 2012, pp. 308-315.
- Fares, A. H., Sharawy, M. I., and Zayed, H. H., "Intrusion Detection: Supervised Machine Learning," Journal of Computing Science and Engineering, Vol. 5, No. 4, 2011, pp. 305-313. https://doi.org/10.5626/JCSE.2011.5.4.305
- Weka, http://www.cs.waikato.ac.nz/ml/weka/index.html
피인용 문헌
- An Efficient Hybrid Self-Learning Intrusion Detection System Based on Neural Networks pp.1757-5885, 2019, https://doi.org/10.1142/S1469026819500019
- 자가적응모듈과 퍼지인식도가 적용된 하이브리드 침입시도탐지모델 vol.13, pp.3, 2015, https://doi.org/10.17662/ksdim.2017.13.3.019