DOI QR코드

DOI QR Code

STRONG DIFFERENTIAL SUBORDINATION AND SUPERORDINATION OF NEW GENERALIZED DERIVATIVE OPERATOR

  • OSHAH, ANESSA (School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia) ;
  • DARUS, MASLINA (School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia)
  • Received : 2015.02.27
  • Accepted : 2015.10.06
  • Published : 2015.12.30

Abstract

In this work, certain classes of admissible functions are considered. Some strong dierential subordination and superordination properties of analytic functions associated with new generalized derivative operator $B^{{\mu},q,s}_{{\lambda}_1,{\lambda}_2,{\ell},d}$ are investigated. New strong dierential sandwich-type results associated with the generalized derivative operator are also given.

Keywords

References

  1. J. A. Antonino and S. Romaguera, Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equation 114 (1994), 101-105. https://doi.org/10.1006/jdeq.1994.1142
  2. J. A. Antonino, Strong differential subordination and applications to univalency conditions, J. Korean Math. Soc. 43 (2006), 311-322. https://doi.org/10.4134/JKMS.2006.43.2.311
  3. K. AL-Shaqsi, Strong differential subordinations obtained with new integral operator defined by polylogarithm function, Internat. J. Math. Math. Sci. 2014, Article ID 260198 (2014).
  4. B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM Journal on Mathematical Analysis 15 (1984), 737-745. https://doi.org/10.1137/0515057
  5. N. E. Cho, Strong differential subordination properties for analytic functions involving the Komatu integral operator, Boundary Value Problems 2013, Article ID 44 (2013).
  6. J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric functiction, Integral Transforms and Special Functions 14 (2003), 7-18. https://doi.org/10.1080/10652460304543
  7. Y. E. Hohlov, Operators and operations in the class of univalent functions, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika 10 (1978), 83-89 (Russian).
  8. M. P. Jeyaramana, T. K. Suresh and E. K. Reddy, Strong differential subordination and superordination of analytic functions associated with Komatu operator, Int. J. Nonlinear Anal. Appl. 4 (2013) (2), 26-44.
  9. S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-172. https://doi.org/10.1307/mmj/1029002507
  10. S. S. Miller and P. T. Mocanu, On some classes of first order differential subordinations, Michigan Math. J. 32 (1981), 185-195.
  11. S. S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Pure and Applied Mathematics 225, Marcel Dekker, New York, 2000.
  12. S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Var. Elliptic Equ. 48 (2003), 815-826. https://doi.org/10.1080/02781070310001599322
  13. G. I. Oros and G. Oros, Strong differential subordination, Turkish J. Math. 33 (2009), 249-257.
  14. G. Oros, Strong differential superordination, Acta Universitatis Apulensis 19 (2009), 101-106.
  15. A. Oshah and M. Darus, Differential sandwich theorems with a new generalized derivative operator, Advances in Mathematics: Scientific J. 3 (2014), 117-124.
  16. S. Ruscheweyh, A new criteria for univalent function, Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1

Cited by

  1. Strong Differential Superordination Results Involving Extended Sălăgean and Ruscheweyh Operators vol.9, pp.19, 2015, https://doi.org/10.3390/math9192487