DOI QR코드

DOI QR Code

Normal-state charge dynamics of ternary platinum germanide superconductor La2Pt3Ge5

  • Song, S.J. (Department of Physics, Hanyang University) ;
  • Sung, N.H. (School of Materials Science and Applied Physics, Gwangju Institute of Science and Technology) ;
  • Cho, B.K. (School of Materials Science and Applied Physics, Gwangju Institute of Science and Technology) ;
  • Moon, S.J. (Department of Physics, Hanyang University)
  • Received : 2015.11.16
  • Accepted : 2015.12.23
  • Published : 2015.12.31

Abstract

We report on the infrared spectroscopic studies of the normal-state electronic response of rare-earth ternary platinum germanide superconductor $La_2Pt_3Ge_5$. We analyzed the temperature-dependent optical conductivity spectra using the Drude-Lorentz oscillator model. We found that the two Drude responses with distinct scattering rates are required to explain the charge dynamics at 10 K while a single Drude mode could reproduce the far-infrared conductivity at higher temperatures. Our results indicated the two-band character of the electronic structure and highlighted the disparate temperature evolution of the electrodynamics of the two electronic states.

Keywords

References

  1. H. F. Braun, "Superconductivity or rare earth-iron silicides," Phys. Lett. A, vol. 75, pp 386-388, 1980. https://doi.org/10.1016/0375-9601(80)90849-X
  2. C. B. Vining, R. N. Shelton, H. F. Braun, and M. Pelizzone, "Low-temperature heat capacity of superconducting ternary iron silicides," Phys. Rev. B, vol. 27, pp. 2800-2806, 1983. https://doi.org/10.1103/PhysRevB.27.2800
  3. Y. Nakajima, T. Nakagawa, T. Tamegai, and H. Harima, "Specific-heat evidence for two-gap superconductivity in the ternary-iron silicide $Lu_2Fe_3Si_5$," Phys. Rev. Lett., vol. 100, pp. 157001-1-4, 2008. https://doi.org/10.1103/PhysRevLett.100.157001
  4. R. T. Gordon et al., "Two-gap superconductivity seen in penetration-depth measurements of $Lu_2Fe_3Si_5$ single crystals," Phys. Rev. B, vol. 78, pp. 024514-1-5, 2008. https://doi.org/10.1103/PhysRevB.78.024514
  5. Y. Machida, S. Sakai, K. Izawa, H. Okuyama, and T. Watanabe, "Enhanced quasiparticle heat conduction in the multigap superconductor $Lu_2Fe_3Si_5$," Phys. Rev. Lett., vol. 106, pp. 107002-1-4, 2011. https://doi.org/10.1103/PhysRevLett.106.107002
  6. N. H. Sung, C. J. Roh, K. S. Kim, and B. K. Cho, "Possible multigap superconductivity and magnetism in single crystals of superconducting $La_2Pt_3Ge_5\;and\;Pr_2Pt_3Ge_5$," Phys. Rev. B, vol. 86, pp. 224507-1-6, 2012. https://doi.org/10.1103/PhysRevB.86.224507
  7. R. A. Kaindl et al., "Far-infrared optical conductivity gap in superconducting $MgB_2$ films," Phys. Rev. Lett., vol. 88, pp. 027003-1-4, 2001. https://doi.org/10.1103/PhysRevLett.88.027003
  8. J. J. Tu et al., "Optical properties of c-axis oriented superconducting $MgB_2$ films," Phys. Rev. Lett., vol. 88, pp. 277001-1-4, 2001.
  9. D. Wu et al., "Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides," Phys. Rev. B, vol. 81, pp. 100512-1-4, 2010. https://doi.org/10.1103/PhysRevB.81.100512
  10. M. Nakajima et al., "Evolution of the optical spectrum with doping in Ba$(Fe_{1-x}Co_x)_2As_2$," Phys. Rev. B, vol. 81, pp. 104528-1-9, 2010. https://doi.org/10.1103/PhysRevB.81.104528
  11. K. W. Kim et al., "Evidence for multiple superconducting gaps in optimally doped $BaFe_{1.87}Co_{0.13}As_2$ from infrared spectroscopy," Phys. Rev. B, vol. 81, pp. 214508-1-5, 2010. https://doi.org/10.1103/PhysRevB.81.214508
  12. J. J. Tu et al., "Optical properties of the iron arsenic superconductor $BaFe_{1.85}Co_{0.15}As_2$," Phys. Rev. B, vol. 82, pp. 174509-1-10, 2010. https://doi.org/10.1103/PhysRevB.82.174509
  13. Y. M. Dai et al., "Hidden T-linear scattering rate in $Ba_{0.6}K_{0.4}Fe_{2}As_{2}$ revealed by optical spectroscopy," Phys. Rev. Lett., vol. 111, pp. 117001-1-5, 2013. https://doi.org/10.1103/PhysRevLett.111.117001
  14. P. Marsik et al., "Low-energy interband transitions in the infrared response of $Ba(Fe_{1-x}Co_x)_2As_2$," Phys. Rev. B, vol. 8, pp. 180508-1-5, 2013.
  15. C. C. Homes, M. Reedyk, D. A. Cradles, and T. Timusk, "Technique for measuring the reflectance of irregular, submillimeter-sized samples," Appl. Opt., vol. 32, pp. 2976-2983, 1993. https://doi.org/10.1364/AO.32.002976
  16. F. Wooten, Optical Properties of Solids, New York and London: Academic Press, pp. 173-182, 1972.