DOI QR코드

DOI QR Code

에너지 발생소자응용을 위한 수열합성법기반 ZnO 나노로드/Polystylene 하이브리드 나노구조 제조

Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications

  • 백성호 (대구경북과학기술원 에너지연구부) ;
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Baek, Seong-Ho (Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2015.11.25
  • 심사 : 2015.12.12
  • 발행 : 2015.12.28

초록

We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate $[Zn(NO_3)_2{\cdot}6H_2O]$ and hexamine $[(CH_2)_6N_4]$ as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications.

키워드

참고문헌

  1. D. C. Look: Mat. Sci. Eng. B. Adv., 80 (2001) 383. https://doi.org/10.1016/S0921-5107(00)00604-8
  2. S. Xu and Z. L. Wang: Nano Research, 4 (2011) 1013. https://doi.org/10.1007/s12274-011-0160-7
  3. S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 331 (Korean). https://doi.org/10.4150/KPMI.2015.22.5.331
  4. Z. L. Wang and J. H. Song: Science, 312 (2006) 242. https://doi.org/10.1126/science.1124005
  5. Z. L. Wang: Sci. Am., 298 (2008) 82.
  6. Y. S. Lee, Y. I. Jung, B. Y. Noh and I. K. Park: Appl. Phys. Express, 4 (2011) 112101. https://doi.org/10.1143/APEX.4.112101
  7. K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim and G. Y. Jung: Adv. Mater., 24 (2012) 792. https://doi.org/10.1002/adma.201103985
  8. A. Umar, S. H. Kim and Y. B. Hahn: Superlattices Microstruct., 39 (2006) 145. https://doi.org/10.1016/j.spmi.2005.08.067
  9. Y. H. Ko and J. S. Yu: Opt. Express, 19 (2010) 297.
  10. Md R. Hasan, S. H. Baek, K. S. Seong, J. H. Kim and I. K. Park: ACS Appl. Mater. Interfaces, 7 (2015) 5768. https://doi.org/10.1021/am5085379
  11. Y. Yang, H. Lai, C. Tao and H. Yang: J. Mater. Sci. Mater. Electron., 21 (2010) 173.
  12. Y.-I. Jung, B.-Y. Noh, Y.-S. Lee, S. H. Baek, J. H. Kim and I. K. Park: Nanoscale Res. Lett., 7 (2012) 1. https://doi.org/10.1186/1556-276X-7-1

피인용 문헌

  1. Morphology Control of ZnO Nanostructures by Surfactants During Hydrothermal Growth vol.23, pp.4, 2016, https://doi.org/10.4150/KPMI.2016.23.4.270