DOI QR코드

DOI QR Code

Source Apportionment of PM2.5 in Gyeongsan Using the PMF Model

PMF 모델을 이용한 경산지역 PM2.5의 오염원 기여도 추정

  • Jeong, YeongJin (Department of Environmental Engineering, Daegu University) ;
  • Hwang, InJo (Department of Environmental Engineering, Daegu University)
  • 정영진 (대구대학교 환경공학과) ;
  • 황인조 (대구대학교 환경공학과)
  • Received : 2015.08.26
  • Accepted : 2015.11.26
  • Published : 2015.12.31

Abstract

The objective of this study was to quantitatively estimate $PM_{2.5}$ source contribution in Gyeongsan. Ambient $PM_{2.5}$ samples have been collected on zefluor, quartz and nylasorb filter by $PM_{2.5}$ samplers of cyclone method from September 2010 to December 2012. Collected samples were analyzed for determining 17 inorganic elements, 8 ions, and 8 carbon components after pretreatment. Based on these chemical information, the PMF model was applied to estimate the quantitative contribution of air pollution sources. The results of the PMF modeling showed that the sources were apportioned by biomass burning source (15.5%), secondary sulfate source (16.0%), industry source (10.4%), soil source (7.0%), gasoline source (9.1%), incinerator source (10.4%), diesel emission source (11.0%), and secondary nitrate source (20.6%), respectively. To analyze local source impacts from various wind directions, the CPF analysis were performed using source contribution results with the wind direction values measured at the site.

Keywords

References

  1. Belis, C.A., F. Karagulian, B.R. Larsen, and P.K. Hopke (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 94-108. https://doi.org/10.1016/j.atmosenv.2012.11.009
  2. Chow, J.C. (1995) Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air Waste Manage. Assoc., 45(5), 320-382. https://doi.org/10.1080/10473289.1995.10467369
  3. Dockery, D.W. and P.H. Stone (2007) Cardiovascular risks from fine particulate air pollution, New England Journal of Medicine, 356(5), 511-513. https://doi.org/10.1056/NEJMe068274
  4. Harrison, R.M., D.C.S. Beddows, L. Hu, and J. Yin (2012) Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations, Atmos. Chem. Phys., 12(17), 8271-8283. https://doi.org/10.5194/acp-12-8271-2012
  5. Huntzicker, J.J., R.L. Johnson, J.J. Shah, and R.A. Cary (1982) Analysis of organic and elemental carbon in ambient aerosols by a thermal optical method, In Particulate Carbon (pp. 79-88). Springer US.
  6. Hwang, I.J. (2010) Source Identification and Estimation of Source Apportionment of Ambient $PM_{2.5}$ at Western National Park Site in USA, J. Korean Soc. Atmos. Environ., 26(1), 21-33. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2010.26.1.021
  7. Hwang, I.J. and D.S. Kim (2003) Source Identification of AmbientPM-10 Using the PMF model, J. Korean Soc. Atmos. Environ., 19(6), 701-717. (in Korean with English abstract)
  8. Hwang, I.J. and D.S. Kim (2013) Research Trends of Receptor Models in Korea and Foreign Countries and Improvement Directions for Air Quality Management, J. Korean Soc. Atmos. Environ., 29(4), 459-476. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.4.459
  9. Hwang, I.J. and P.K. Hopke (2007) Estimation of source apportionment and potential source locations of $PM_{2.5}$ at a west coastal IMPROVE site, Atmos. Environ., 41, 506-518. https://doi.org/10.1016/j.atmosenv.2006.08.043
  10. Hwang, I.J., D.S. Kim, and P.K. Hopke (2008a) Estimation of Source Apportionment of Ambient $PM_{2.5}$ at Western Coastal IMPROVE Site in USA, J. Korean Soc. Atmos. Environ., 24(1), 30-42. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.1.030
  11. Hwang, I.J., P.K. Hopke, and J.P. Pinto (2008b) Source apportionment and spatial distributions of coarse particles during the Regional Air Pollution Study, Environ. Sci. Technol., 42, 3524-3530. https://doi.org/10.1021/es0716204
  12. Hwang, I.J., Y.H. Cho, W.G. Choi, H.M. Lee, and T.O. Kim (2008c) Quantitative estimation of $PM_{10}$ source contribution in Gumi city by the positive matrix factorization model, J. Korean Soc. Atmos. Environ., 24(1), 100-107. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.1.100
  13. Jeon, J.M., D. Hur, and D.S. Kim (2005) Development of source profiles and estimation of source contribution for VOCs by the chemical mass balance model in the Yeosu Petrochemical Industrial Complex, J. Korean Soc. Atmos. Environ., 21(1), 83-96. (in Korean with English abstract)
  14. Kim, D.S. (2013) Air Pollution History, Regulatory Changes, and Remedial measures of the Current Regulatory Regimes in Korea, J. Korean Soc. Atmos. Environ., 29(4), 353-368. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.4.353
  15. Kim, E. and P.K. Hopke (2004) Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions, J. Air Waste Manage. Assoc., 54(7), 773-785. https://doi.org/10.1080/10473289.2004.10470948
  16. Lee, H.S., C.M. Kang, B.W. Kang, and S.K. Lee (2005) A study on the $PM_{2.5}$ source characteristics affecting the Seoul area using a chemical mass balance receptor model, J. Korean Soc. Atmos. Environ., 21(3), 329-341. (in Korean with English abstract)
  17. Lee, H.W., T.J. Lee, S.S. Yang, and D.S. Kim (2008) Identification of Atmospheric $PM_{10}$ Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Aera by Using PMF, J. Korean Soc. Atmos. Environ., 24(4), 439-454. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.4.439
  18. Lee, T.J., J.B. Hur, S.M. Yi, S.D. Kim, and D.S. Kim (2009) Estimation of $PM_{10}$ source contributions on three cities in the Metropolitan area by using PMF model, J. Korean Soc. Atmos. Environ., 25(4), 275-288. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2009.25.4.275
  19. Moon, K.J., J.S. Han, B.J. Kong, I.R. Jung, S.S. Cliff, T.A. Cahill, and K.D. Perry (2006) Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan, Jeju Island during ACE-Asia, J. Korean Soc. Atmos. Environ., 22(5), 590-603. (in Korean with English abstract)
  20. Oh, M.S., T.J. Lee, and D.S. Kim (2011) Quantitative source apportionment of size-segregated particulate matter at urbanized local site in Korea, Aerosol and Air Quality Research, 11, 247-264. https://doi.org/10.4209/aaqr.2010.11.0099
  21. Paatero, P. (1997) Least squares formulation of robust nonnegative factor analysis, Chemom. Intell. Lab. Syst., 37(1), 23-35. https://doi.org/10.1016/S0169-7439(96)00044-5
  22. Polissar, A.V., P.K. Hopke, P. Paatero, W.C. Malm, and J.F. Sisler (1998) Atmospheric aerosol over Alaska: 2. Elemental composition and sources, J. Geophysical Research: Atmospheres (1984-2012), 103(D15), 19045-19057. https://doi.org/10.1029/98JD01212
  23. Sahu, M., S. Hu, P.H. Ryan, G.L. Masters, S.A. Grinshpun, J.C. Chow, and P. Biswas (2011) Chemical compositions and source identification of $PM_{2.5}$ aerosols for estimation of a diesel source surrogate, Science Total Environ., 409(13), 2642-2651. https://doi.org/10.1016/j.scitotenv.2011.03.032
  24. Shin, S.A., J.S. Han, and S.D. Kim (2006) Source apportionment and the origin of Asian dust observed in Korea by receptor modeling (CMB), J. Korean Soc. Atmos. Environ., 22(2), 157-166. (in Korean with English abstract)
  25. Taiwo, A.M., R.M. Harrison, and Z. Shi (2014) A review of receptor modelling of industrially emitted particulate matter, Atmos. Environ., 97, 109-120. https://doi.org/10.1016/j.atmosenv.2014.07.051
  26. Wang, Y., P.K. Hopke, X. Xia, O.V. Rattigan, D.C. Chalupa, and M.J. Utell (2012) Source apportionment of airborne particulate matter using inorganic and organic species as tracers, Atmos. Environ., 55, 525-532. https://doi.org/10.1016/j.atmosenv.2012.03.073
  27. Watson, J.G., A.L.W. Chen, J.C. Chow, P. Doraiswamy, and D.H. Lowenthal (2008) Source apportionment: findings from the US supersites program, J. Air Waste Manage. Assoc., 58(2), 265-288. https://doi.org/10.3155/1047-3289.58.2.265
  28. Yi, S.M. and I.J. Hwang (2014) Source Identification and Estimation of Source Apportionment for Ambient $PM_{10}$ in Seoul, Korea, Asian J. Atmos. Environ., 8(3), 115-125. https://doi.org/10.5572/ajae.2014.8.3.115
  29. Zhang, X., A. Hecobian, M. Zheng, N.H. Frank, and R.J. Weber (2010) Biomass burning impact on $PM_{2.5}$ over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atmos. Chem. Phys., 10(14), 6839-6853. https://doi.org/10.5194/acp-10-6839-2010
  30. Zhao, W. and P.K. Hopke (2004) Source apportionment for ambient particles in the San Gorgonio wilderness, Atmos. Environ., 38(35), 5901-5910. https://doi.org/10.1016/j.atmosenv.2004.07.011

Cited by

  1. -Part II vol.32, pp.2, 2016, https://doi.org/10.5572/KOSAE.2016.32.2.158
  2. from Stationary Sources vol.32, pp.6, 2016, https://doi.org/10.5572/KOSAE.2016.32.6.603
  3. Source Apportionment of PM10 at Pyeongtaek Area Using Positive Matrix Factorization (PMF) Model vol.34, pp.6, 2018, https://doi.org/10.5572/KOSAE.2018.34.6.849