DOI QR코드

DOI QR Code

주기하중 하에서 철근 콘크리트 전단벽체와 철골 연결보 접합부의 내진성능

Seismic Performance of Steel Coupling Beam and RC Shear Wall under Lateral Cyclic Load

  • Lim, Woo-Young (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Hong, Sung-Gul (Dept. of Architecture and Architectural Engineering, Seoul National University)
  • 투고 : 2014.10.30
  • 심사 : 2015.08.17
  • 발행 : 2015.12.30

초록

이 논문에서는 철골 연결보와 철근 콘크리트 전단벽체의 내진성능을 평가하고자 주기하중 실험을 수행하였다. 실험의 주요 변수는 벽체의 보강 상세이었다. 현행 설계 기준을 따라 설계된 병렬 전단벽체는 콘크리트의 지압강도로 인해 조기 파괴되었다. 한편, 매립길이 내에 추가적인 수직 및 수평 보강재로 보강된 벽체의 경우, 지압파괴가 방지되는 것으로 나타났다. 실험결과, 벽체의 수직철근은 수평철근보다 병렬 전단벽의 전단 강도에 더 영향을 끼치는 것으로 나타났다. 매립 철골 보 플랜지 상 하부에서 발생하는 콘크리트의 응력분포를 가정하여, PC 병렬 전단벽체 내의 소요 철근의 양이 결정되었으며, 이를 이용하여 예측 강도 식을 제안하였다. 예측된 강도식은 실험값과 비교적 잘 일치하였다.

In this paper, cyclic loading test was performed to evaluate the seismic performance of the steel coupling beam and RC shear wall. The test parameter was reinforcement detail of the shear wall. For the shear wall which was designed in accordance with the current design codes, a premature bearing failure occurred at the face of the wall. On the other hand, the bearing failure of walls was prevented due to the new type of reinforcement details. Test results indicated that the vertical reinforcements were more affected to the shear strength of the coupled shear wall than the horizontal reinforcement. Based on the failure mode, concrete stress distribution above and below flanges of the embedded steel beam was proposed. Assuming proposed concrete stress distribution, load resistance was predicted and it was agree well with test data.

키워드

참고문헌

  1. Paulay, T., and Binney, J. R., "Diagonally Reinforced Coupling Beams of Shear Walls", Special publication ACI, Vol.42, Detroit, pp.579-589.
  2. Harries, K. A., Mitchell, D., Redwood, R. G., and Cook, W. D., "Seismic Design of Coupling Beams - A Case for Mixed Construction", Canadian Journal of Civil engineering, Vol.24, No.3, 1997, pp.448-459. https://doi.org/10.1139/l96-130
  3. Lam, W. Y., Su, R. K. L., and Pam, H. J., "Experimental Study on Embedded Steel Plate Composite Coupling Beams", Journal of Structural Engineering, Vol.131, No.8, August 2005, pp.1294-1302. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1294)
  4. Marcakis, A. H., and Gaffar, G. H., "Precast Concrete Connections with Embedded Steel Member", PCI Journal, Vol.25, No.4, July-August 1980, pp.88-116. https://doi.org/10.15554/pcij.07011980.88.116
  5. Mattock, A. H., and Gaffar, G. H., "Strength of Embedded Steel Sections as Brackets", ACI Jounal, Vol.79, No.9, March-April 1982, pp.83-93.
  6. Kent, D. C., and Park, R., "Flexural Members with Confined Concrete", Journal of Structural Division, ASCE, Vol.97, ST 7, July 1971, pp.1969-1990.
  7. Yoon, H. D., Park, W. S., Han, B. C., Hwang, S. K., Lee, J. Y., and Yi, W. H., "Shear Strength of Steel Coupling Beams Connections Embedded in Reinforced Concrete Shear Wall", Journal of the Architectural Institute of Korea, Vol.20, No.5, 2004, pp.43-50.
  8. Song, H. B., and Yi, W. H., "Embedded Length of Steel Coupling Beam in Coupled Shear Wall System", Journal of the Architectural Institute of Korea, Vol.21, No.11, 2005, pp.43-50.
  9. Harries, K. A., Seismic Design and Retrofit of Coupled Walls using Structural Steel, Department of Civil and Applied Mechanics, McGill University, Montreal, Canada, 1995.
  10. Englekirk, R. E., Seismic Design of Reinforced and Precast Concrete Buildings, John Wiley and Sons, 2003, pp.296-345.
  11. Bruneau, M., Uang, C. M., and Whittaker, A., Ductile Design of Steel Structures, McGraw-Hill, New York, NY, USA, 1998, p.485.
  12. Manheim, D. N., and Popov, E. P., "Plastic Shear Hinges in Steel Frames", Journal of Structural Engineering, Vol.109, No.10, October 1983, pp.2404-2419. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:10(2404)
  13. Engelhardt, M. D., and Popov, E. P., "Experimental Performance of Long Links in Eccentrically Braced Frame", Journal of Structural Engineering, Vol.118, No.11, November 1992, pp.3067-3088. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3067)
  14. American Institute of Steel Construction, Inc., Seismic Provisions for Structural Steel Buildings, Chicago, IL, April 1997 and Supplement No. 2, September 2000.
  15. AISC, Manual of Steel Construction - Load and Resistance Factor Design - Third Edition, AISC, Inc., Chicago, IL, 2002.
  16. ACI 318-08, Building Code Requirements for Structural Concrete and Commentary, ACI Committee 318, American Concrete Institute, 2008, pp.203-367.
  17. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2008, p.406.
  18. PCI Design Handbook, First Edition, Chicago, Illinois.
  19. Gong, B., and Shahrooz, B. M., "Steel-Concrete Composite Coupling Beams - Behavior and Design", Engineering Structures, Vol.23, 2001, pp.1480-1490. https://doi.org/10.1016/S0141-0296(01)00042-6
  20. Astaneh-Asl, A., McMullin, K. M., and Call, S. M., "Behavior and Design of Steel Single Plate Shear Connections", Journal of Structural Engineering, Vol.119, No.9, August 1993, pp.2421-2440. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:8(2421)