DOI QR코드

DOI QR Code

Development of Radar Tracking Technique for the Short -Term Rainfall Field Forecasting-

초단기 강우예측을 위한 기상레이더 강우장 추적기법 개발

  • Kim, Tae-Jeong (Department of Civil Engineering, Chonbuk National University) ;
  • Lee, Dong-Ryul (Korea Institute of Construction Technology, Water Resources Research Division) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University)
  • 김태정 (전북대학교 토목공학과, 방재연구센터) ;
  • 이동률 (한국건설기술연구원 수자원.하천연구소) ;
  • 권현한 (전북대학교 토목공학과, 방재연구센터)
  • Received : 2015.10.06
  • Accepted : 2015.10.16
  • Published : 2015.12.31

Abstract

Weather radar rainfall data has been recognized for making valuable contributions to short-term flood forecasting and management over the past decades. There are several advantages to better monitoring rainfall in ungauged area compared to ground-based rain gauges with which spatial patterns of the rainfall are not effectively identified. Hence, this study aims to develop a new scheme to forecast spatio-temporal rainfall field. The proposed model was based on an advection scheme to track wind patterns and velocity. The results showd a promising forecasting skill with quantitative and qualitative measures. It was confirmed that the forecasted rainfall may be effectively used an input data for a distributed hydrological model.

초단기 홍수예보를 위한 주요자료로서 최근 기상레이더의 중요성이 크게 부각되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강우현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측유역을 통과하는 강우장의 이동 및 변화 파악이 가능한 장점이 있다. 본 연구는 강우장의 공간적 분포와 레이더 강우세포를 추적하는 강우장 예측 해석방안을 수립하였다. 이를 위해 강우장의 공간적인 이동을 고려하기 위해 강우장의 바람장 이류(advection) 패턴을 추출하여 각 강우세포가 가지는 이동방향 및 속도를 고려한 강우장 추적기법을 통하여 강우장을 예측하였다. 본 연구를 통하여 개발된 기상레이더 강우장 상관분석 기법을 활용한 초단기강우예측 결과는 집중호우시 홍수 예 경보를 위한 수문모형의 입력자료로 활용이 가능할 것으로 사료된다.

Keywords

References

  1. Ahn, S.-R., Park, H.-S., Han, M.-S., and Kim, S.-J. (2014). "Applicability of Sobaek Radar Rain for Flood Routing of Chungju Dam Watershed." Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 1, pp. 129-143 (in Korean). https://doi.org/10.11108/kagis.2014.17.1.129
  2. Andrieu, H., Creutin, J.D., Delrieu, G., and Faure, D. (1997). "Use of weather radar for the hydrology of a mountainous area. Part I: radar measurement interpretation." Journal of Hydrology, Vol. 193, No. 1-4, pp. 1-25. https://doi.org/10.1016/S0022-1694(96)03202-7
  3. Austin, G.L., and Bellon, A. (1974). "The use of digital weather radar records for short‐term precipitation forecasting." Quarterly Journal of the Royal Meteorological Society, Vol. 100, No. 426, pp. 658-664. https://doi.org/10.1002/qj.49710042612
  4. Borga, M. (2002). "Accuracy of radar rainfall estimates for streamflow simulation." Journal of Hydrology, Vol. 267, No. 1, pp. 26-39. https://doi.org/10.1016/S0022-1694(02)00137-3
  5. Bringi, V.N., and Chandrasekar, V. (2001). "Polarimetric Doppler weather radar: principles and applications." Cambridge University Press.
  6. Fornasiero, A., Bech, J., and Alberoni, P.P. (2006). "Enhanced radar precipitation estimates using a combined clutter and beam blockage correction technique." Natural Hazards and Earth System Science, Vol. 6, No. 5, pp. 697-710. https://doi.org/10.5194/nhess-6-697-2006
  7. Forsythe, K.W., and Bliss, D.W. (2005). "Waveform correlation and optimization issues for MIMO radar." In Signals, Systems and Computers, Conference Record of the Thirty-Ninth Asilomar Conference, pp. 1306-1310.
  8. Hilst, G.R., and Russo, J.A. (1960). "An objective extrapolation technique for semi-conservative fields with an application to radar patterns." Travelers Insurance Companies.
  9. Hitschfeld, W., and Bordan, J. (1954). "Errors inherent in the radar measurement of rainfall at attenuating wavelengths." Journal of Meteorology, Vol. 11, No. 1, pp. 58-67. https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2
  10. Kim, G.S., and Kim, J.P. (2009) "Development of a Short-term Rainfall Forecast Model Using Sequential CAPPI Data." Journal of the Korean Society of Civil Engineers, Vol. 29, No. 6B, pp. 543-550 (in Korean).
  11. Kim, T.-J., Kim, K.-Y., and Kwon, H.-H. (2015). "Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCMMulti Model Ensemble." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 2, pp. 327-340 (in Korean). https://doi.org/10.12652/Ksce.2015.35.2.0327
  12. Kim, W.I., Oh, K.D., Ahn, W.S., and Jun, B.H. (2008). "Study on Flood Prediction System Based on Radar Rainfall Data" Journal of Korean Water Resources Association, Vol. 41, No. 11, pp. 1153-1162 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.11.1153
  13. Lee, D.R., Lee, J.S., and Kim, D.K. (2014). "Applicability of a space-time rainfall downscaling algorithm based on multifractal framework in modeling heavy rainfall events in korean peninsula." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 839-852 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.9.839
  14. Lee, K.-H., Lim, S.-H., Jang, B.-J., and Lee, D.-R. (2015). "Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase." Journal of Korean Water Resources Association, Vol. 48, No. 1, pp. 57-67 (in Korean). https://doi.org/10.3741/JKWRA.2015.48.1.57
  15. Leese, J.A., Novak, C.S., and Clark, B.B. (1971). "An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation." Journal of Applied Meteorology, Vol. 10, No. 1, pp. 118-132. https://doi.org/10.1175/1520-0450(1971)010<0118:AATFOC>2.0.CO;2
  16. Marshall, J.S., and Palmer, W.M.K. (1948). "The distribution of raindrops with size." Journal of Meteorology, Vol. 5, No. 4, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  17. Mecklenburg, S., Joss, J., and Schmid, W. (2000). "Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm." Journal of Hydrology, Vol. 239, No. 1, pp. 46-68. https://doi.org/10.1016/S0022-1694(00)00352-8
  18. Moretti, G., and Montanari, A. (2007). "AFFDEF: a spatially distributed grid based rainfall-runoff model for continuous time simulations of river discharge." Environmental Modelling & Software, Vol. 22, No. 6, pp. 823-836. https://doi.org/10.1016/j.envsoft.2006.02.012
  19. National Institute of Meteorological Research (2006)
  20. Rinehart, R.E., and Garvey, E.T. (1978). "Three-dimensional storm motion detection by conventional weather radar." Nature, Vol. 273, pp. 287-289. doi:10.1038/ 273287a0
  21. Rollenbeck, R., and Bendix, J. (2011). "Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations." Atmospheric Research, Vol. 99, No. 2, pp. 277-289. https://doi.org/10.1016/j.atmosres.2010.10.018
  22. Schaefer, J.T. (1990). "The critical success index as an indicator of warning skill." Weather and Forecasting, Vol. 5, No. 4, pp. 570-575. https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
  23. Tuttle, J.D., and Foote, G.B. (1990). "Determination of the boundary layer airflow from a single Doppler radar data." Journal of Atmospheric and oceanic Technology, Vol. 7, No. 2, pp. 218-232. https://doi.org/10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2
  24. Van Horne, M.P., Vivoni, E.R., Entekhabi, D., Hoffman, R.N., and Grassotti, C. (2006). "Evaluating the effects of image filtering in short-term radar rainfall forecasting for hydrological applications." Meteorological Applications, Vol. 13, No. 3, pp. 289-303. https://doi.org/10.1017/S1350482706002295
  25. Velasco-Forero, C.A., Sempere-Torres, D., Cassiraga, E.F., and Gomez-Hernandez, J.J. (2009). "A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data." Advances in Water Resources, Vol. 32, No. 7, pp. 986-1002. https://doi.org/10.1016/j.advwatres.2008.10.004
  26. Wang, J., and Wolff, D.B. (2010). "Evaluation of TRMM ground-validation radar-rain errors using rain gauge measurements." Journal of Applied Meteorology and Climatology, Vol. 49, No. 2, pp. 310-324. https://doi.org/10.1175/2009JAMC2264.1
  27. Willmott, C.J. (1981). "On the validation of models." Physical Geography, Vol. 2, No. 2, pp. 184-194.
  28. Wilson, J.W. (1966). "Movement and predictability of radar echoes." US Department of Commerce, Environmental Science Services Administration, Institutes for Environmental Research, National Severe Storms Laboratory.
  29. Wolff, D.B., Marks, D.A., Amitai, E., Silberstein, D.S., Fisher, B.L., Tokay, A., Wang, J., and Pippitt, J.L. (2005). "Ground validation for the tropical rainfall measuring mission (TRMM)." Journal of Atmospheric and Oceanic Technology, Vol. 22, No. 4, pp. 365-380. https://doi.org/10.1175/JTECH1700.1
  30. Wolfson, M.M., Forman, B.E., Hallowell, R.G., and Moore, M.P. (1999). "The growth and decay storm tracker." In 8th Conference on Aviation, Range, and Aerospace Meteorology, Dallas, TX pp. 58-62.
  31. Yoo, C.S., Ha, E.H., Kim, B.S., Kim, K.J., and Choi, J,H. (2008). "Sampling Error of Areal Average Rainfall due to Radar Partial Coverage." Journal of Korean Water Resources Association, Vol. 41, No. 5, pp. 545-558 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.5.545
  32. Yoo, C.S., Kim, B.S., Kim, K.J., and Choi, J.G. (2007). "On Ground-Truth Designs of Radar Rainfall Using Rain Gauge Rainfall." Journal of Korean Water Resources Association, Vol. 40, No. 9, pp. 743-754 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.9.743