References
- E.S. Golovina and G.G. Fyodorov, Influence of physical and chemical factors on burning velocity, Sixth Symposium (International) on Combustion, The Combustion Institute Pittsburgh, 1956, 88-96.
- S.G. Davis, H. Wang, K. Breinsky, and C.K. Law, Laminar flame speeds and oxidation kinetics of benene-air and toluene-air flames, Twenty-Sixth Symposium (International) on Combustion/The combustion institute, 1996, 1025-1033.
- R.J. Johnston and J.T. Farrell, Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure, Proceedings of the Combustion Institute, 30 (2005) 217-224. https://doi.org/10.1016/j.proci.2004.08.075
- C. Ji, E. Dames, H. Wang, and F.N. Egolfopoulos, Propagation and extinction of benzene and alkylated benzene flames, Combustion and Flame, 159 (2012) 1070-1081. https://doi.org/10.1016/j.combustflame.2011.10.017
- D.A. Bittker, Detailed mechanism for oxidation of benzene, Combustion Science and Technology, 79 (1991) 49-72. https://doi.org/10.1080/00102209108951757
- H.Y. Zhang and J.T. Mckinnon, Elementary reaction modeling of high-temperature benzene combustion, Combustion Science and Technology, 107 (1995) 261-399. https://doi.org/10.1080/00102209508907808
- A. Ristori, P. Dagaut, A.E. Bakali, G. Penglon, and M. Cathonnet, Benzene oxidation results in a JDR and comprehensive kinetic modeling in JSR, shock-tube and flame, Combustion Science and Technology, 167 (2001) 223-256. https://doi.org/10.1080/00102200108952183
- H. Richter, S, Granata, W.H. Green, and J.B. Howard, Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proceedings of the Combustion Institute, 30 (2005) 1394-1405.
- K. Narayanaswamy, G. Blanquart, and H. Pitsch, A consistent chemical mechanism for oxidation of substituted aromatic species, Combustion and Flame, 157 (2010) 1879-1898. https://doi.org/10.1016/j.combustflame.2010.07.009
- G. Vourliotakis, G. Skevis, and M.A. Founti, A detailed kinetic modelling study of benzene oxidation and combustion in premixed flames and ideal reactors, Energy & Fuels, 25 (2011) 1950-1963. https://doi.org/10.1021/ef101712p
- CHEMKIN-PRO, Reaction Design Inc., San Diego, CA 92121, USA http://www.reactiondesign.com.
- Z.M. Djurisic, Detailed kinetic modeling of benzene and toluene oxidation at high temperatures, MS Thesis, University of Delaware, 1999.
- G.J. Gibbs and H.F. Calcote, Effect of molecular structure on burning velocity, J. Chem. Eng. Data, 4(3) (1959) 226-237. https://doi.org/10.1021/je60003a011
-
H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, and C.K. Law, "USC Mech Version II, High-temperature combustion reaction model of
$H_2/CO/C_1-C_4$ compounds," http://ignis.usc.edu/USC_Mech_II.htm, May 2007. -
K.Y. Lee, T.H. Nam, H.S. You, and D.S. Choi, The Flame structure of freely porpagating
$CH_4/O_2/N_2$ premixed flames on the$O_2$ enrichment, Trans. Korean Soc. Mech. Eng. B, 26(4) (2002) 555-560. https://doi.org/10.3795/KSME-B.2002.26.4.555 - T.J. Kim, R.A. Yetter, and F.L. Dryer, New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive, Twenty- Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1994, 759-766.
- GRI-Mech Version 3.0 7/30/99, http://www.me.berkeley.edu/gri_mech/.
- T. Nagy and T. Yuranyi, Reduction of very large reaction mechanisms using methods based on simulation error minimization, Combustion and Flame, 156 (2009) 417-428. https://doi.org/10.1016/j.combustflame.2008.11.001
- S.R. Turns, An Introduction to Combustion, 2nd Ed., McGraw-Hill, 2000.
- M.D. Smooke and V. Giovangigli, Formulation of the Premixed and Nonpremixed Test Problems, in Lecture Notes in Physics 384, Smooke, M.D. (Ed), Springer-Verlag, 1991.