DOI QR코드

DOI QR Code

R=1/2 Self-Doubly 조직 직교 길쌈부호를 찾는 효율적인 최적 스팬 알고리듬

An Efficient Algorithm for finding Optimal Spans to determine R=1/2 Rate Systematic Convolutional Self-Doubly Orthogonal Codes

  • 투고 : 2015.10.02
  • 심사 : 2015.11.23
  • 발행 : 2015.11.30

초록

본 논문에서는 길쌈 Doubly 직교 부호의 최적 스팬을 찾기 위한 새로운 방법(Convolutional Self-Doubly Orthogonal, CDO)을 제안한다. 이 새로운 방법은 병렬 Implicitly-Exhaustive 탐색방법을 사용하는데, 이 방법으로 R =1/2 CDO 코드에 대한 최적의 스팬을 찾기 위해서 계산시간을 감소시키는 방법으로 동적 검색 공간 감소 방법을 적용했다. 제안된 알고리듬을 모의실험한 결과 기존의 방법에 비해서 계산시간이 감소되었고, 오류 정정 성능이 향상되었음을 확인하였다.

In this paper, a new method for finding optimal and short span in Convolutional Self-Doubly Orthogonal(CDO) codes are proposed. This new algorithm based on Parallel Implicitly-Exhaustive search, where we applied dynamic search space reduction methods in order to reduce computational time for finding Optimal Span for R=1/2 rate CDO codes. The simulation results shows that speedup and error correction performance of the new algorithm is better.

키워드

참고문헌

  1. C. Cardinal, D. Haccoun, and F. Gagnon, "Iterative threshold decoding without interleaving for convolutional self-doubly orthogonal codes," IEEE Trans. Communications, vol. 51, no. 8, 2003, pp. 1274-1282. https://doi.org/10.1109/TCOMM.2003.815083
  2. H. Shin, "Development of constant current SMPS for LED Lighting," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 1, 2015, pp. 111-116. https://doi.org/10.13067/JKIECS.2015.10.1.111
  3. Y. Jeong, "A study on control of generators based on SMPS," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, 2012, pp. 107-115. https://doi.org/10.13067/JKIECS.2012.7.1.107
  4. G. Kowarzyk, N. Belanger, D. Haccoun, and Y. Savaria, "Efficient Parallel Search Algorithm for Determining Optimal R=1/2 Systematic Convolutional Self-Doubly Orthogonal Codes," IEEE Trans. Comm., vol. 61, no. 3, 2013, pp. 865-876. https://doi.org/10.1109/TCOMM.2013.011613.120145
  5. H. Shin, "Design of LED Driving SMPS for Large Traffic Signal Lamp," J. of the Korea Institute of Electronic Communication Sciences, vol. 4, no. 2, 2009, pp. 123-129.
  6. W. Wu, "New Convolutional Codes-Part I," IEEE Trans. Communications, vol. 23, no. 9, Sept. 1975, pp. 942-956. https://doi.org/10.1109/TCOM.1975.1092903
  7. C. Cardinal, E. Roy, and D. Haccoun, "Simplified Convolutional Self-Doubly Orthogonal Codes: Search Algorithms and Codes Determination," IEEE Trans. Communications, vol. 57, no. 6, 2009, pp. 1674-1682. https://doi.org/10.1109/TCOMM.2009.06.070529
  8. C. Amin, N. Menezes, K. Killpack, and F. Dartu, "Statistical static timing analysis: how simple can we get?," Design Automation Conf. 2005. Proc. 42nd, Anaheim, CA, USA, May 2005, pp.652-657.
  9. X. Bai, P. Patel, and X. Zhang, "A New Statistical Setup and Hold Time Definition,"IC Design & Technology (ICICDT), 2012 IEEE Int. Conf. Austin, TX, May 2012, pp.1-4.
  10. B. Rebaud, M. Belleville, and C. Bernard, "Setup and Hold Timing Violations Induced by Process Variations, in a Digital Multiplier," Symp. on VLSI, 2008. ISVLSI '08. IEEE Computer Society Annual, Montpellier, France, 2008, pp. 316-321.