DOI QR코드

DOI QR Code

Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers

  • Li, Jiaolong (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Hou, Yongqing (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Yi, Dan (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Zhang, Jun (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Wang, Lei (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Qiu, Hongyi (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Ding, Binying (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Gong, Joshua (Guelph Food Research Centre, Agriculture and Agri-Food Canada)
  • Received : 2015.03.31
  • Accepted : 2015.05.27
  • Published : 2015.12.01

Abstract

This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a $2{\times}2$ factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or $500{\mu}g/kg$ body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of $500{\mu}g/kg$ BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-$1{\beta}$ (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin $E_2$ (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers.

Keywords

References

  1. Bergmeyer, H. U. 1984. Methods of Enzymatic Analysis. 3rd edn. Verlag Chemie, Weinheim, Germany.
  2. Blikslager, A. T., A. J. Moeser, J. L.Gookin, S. L.Jones, and J. Odle. 2007. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 87:545-564. https://doi.org/10.1152/physrev.00012.2006
  3. Chung, Y. S., I. S. Song, R. H. Erickson, M. H. Sleisenger, and Y. S. Kim. 1985. Effect of growth and sodium butyrate on brush bordermembrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res. 45:2976-2982.
  4. Claus, R., D. Günthner, and H. Letzguss. 2007. Effects of feeding fat-coated butyrate on mucosal morphologyand function in the small intestine of the pig. J. Anim. Physiol. Anim. Nutr. 91:312-318. https://doi.org/10.1111/j.1439-0396.2006.00655.x
  5. Czerwinski, J., O. Hojberg, S. Smulikowska, R. M. Engberg, and A. Mieczkowska. 2012. Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch. Anim. Nutr. 66:102-116. https://doi.org/10.1080/1745039X.2012.663668
  6. Davis, R. E. 1930. The metabolism of tributyrin. J. Biol. Chem. 88:67-75.
  7. Donohoe, D. R., N. Garge, X. Zhang, W. Sun, T. M. O'Connell, M. K. Bunger, and S.J.Bultman. 2011. Themicrobiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13:517-526. https://doi.org/10.1016/j.cmet.2011.02.018
  8. Feingold, K. R., Y. Wang, A. Moser, J. K. Shigenaga, and C.Grunfeld. 2008. LPS decreases fatty acid oxidation and nuclear hormone receptors in the kidney. J. Lipid Res. 49:2179-2187. https://doi.org/10.1194/jlr.M800233-JLR200
  9. Fusunyan, R. D., J. J. Quinn, M. Fujimoto, R. P. MacDermott, and I. R. Sanderson. 1999. Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells through histone acetylation. Mol. Med. 5:631-640.
  10. Hou, Y., K.Yao, L.Wang, B. Ding, D. Fu, Y. Liu, H. Zhu, J. Liu, Y. Li, P. Kang, Y. Yin, and G. Wu. 2011. Effects of aketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br. J. Nutr. 106:357-363. https://doi.org/10.1017/S0007114511000249
  11. Hou, Y., L. Wang, B. Ding, Y. Liu, H. Zhu, J. Liu, Y. Li, X. Wu, Y. Yin, and G.Wu. 2010. Dietary $\alpha$-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555-564. https://doi.org/10.1007/s00726-010-0473-y
  12. Hou, Y., L. Wang, D. Yi, B. Ding, Z. Yang, J. Li, X. Chen, Y. Qiu, and G. Wu. 2013. N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513-522. https://doi.org/10.1007/s00726-012-1295-x
  13. Hu, X. F., Y. M.Guo, J. H. Li, G. L. Yan, S. Bun, and B. Y. Huang. 2011. Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Can. J. Anim. Sci. 91:379-384. https://doi.org/10.4141/cjas2011-008
  14. Jerzsele, A., K. Szeker, R. Csizinsky, E. Gere, C. Jakab, J. J. Mallo, and P. Galfi. 2012. Efficacy of protectedsodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult. Sci. 91:837-843. https://doi.org/10.3382/ps.2011-01853
  15. Kotunia, A., J. Wolinski, D. Laubitz, M. Jurkowska, V. Romé, P. Guilloteau, and R. Zabielski. 2004. Effect of sodium butyrate on the small intestine development in neonatal pignets feed by artificial sow. J. Physiol. Pharmacol. 55(Suppl 2):59-68.
  16. Leeson, S., H. Namkung, M. Antongiovanni, and E. H. Lee. 2005. Effect of butyric acid on the performanceand carcass yield of broiler chickens. Poult. Sci. 84:1418-1422. https://doi.org/10.1093/ps/84.9.1418
  17. Lehmann, G. L., F. I. Carreras, L. R.Soria, S. A.Gradilone, and R. A. Marinelli.2008. LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8: Role in sepsisassociated cholestasis. Am. J. Physiol.Gastrointest. Liver Physiol. 294:G567-G575. https://doi.org/10.1152/ajpgi.00232.2007
  18. Lu, J. J., X. T. Zou, and Y. M. Wang. 2008. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J. Anim. Feed Sci. 17:568-578. https://doi.org/10.22358/jafs/66685/2008
  19. Mahdavi, R. and M.Torki. 2009. Study on usage period of dietary protected butyric acid on performance, carass characteristics, serum metabolite levels and humoral immune response of broiler chickens. J. Anim. Vet. Adv. 8:1702-1709.
  20. Mallo, J. J., A. Balfagon, M. I. Gracia, P. Honrubia, and M. Puyalto. 2012. Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets. J. Anim. Sci. 90(Suppl4):227-229. https://doi.org/10.2527/jas.53959
  21. Manzanilla, E. G., M. Nofrarias, M. Anguita, M. Castillo, J. F. Perez, S. M. Martin-Orue, C. Kamel, and J.Gasa. 2006. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 84:2743-2751. https://doi.org/10.2527/jas.2005-509
  22. Namkung, H., H. Yu, J. Gong, and S. Leeson. 2011. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens. Poult. Sci. 90:2217-2222. https://doi.org/10.3382/ps.2011-01498
  23. Nancey, S., J. Bienvenu, B. Coffin, F. Andre, L. Descos, and B. Flourie. 2002. Butyrate strongly inhibits in vitro stimulated release of cytokines in blood. Dig. Dis. Sci. 47:921-928. https://doi.org/10.1023/A:1014781109498
  24. Ogawa, H., P. Rafiee, P. J. Fisher, N. A. Johnson, M. F. Otterson, and D. G. Binion. 2003. Butyrate modulates gene and protein expression in human intestinal endothelial cells. Biochem. Biophys. Res. Commun. 309:512-519. https://doi.org/10.1016/j.bbrc.2003.08.026
  25. Panda, A. K., S. V. Rama Rao, M. V. L. N. Raju, and G. Sunder Sunder. 2009. Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian Australas. J. Anim. Sci. 22:1026-1031. https://doi.org/10.5713/ajas.2009.80298
  26. Parka., J. S., M. S. Woo, S. Y. Kim, W. K. Kim, and H. S. Kim. 2005. Repression of interferon-$\gamma$-induced inducible nitric oxide synthase (iNOS) gene expression in microglia by sodium butyrate is mediated through specific inhibition of ERK signaling pathways. J. Neuroimmunol. 168:56-64. https://doi.org/10.1016/j.jneuroim.2005.07.003
  27. Sauer, J., K. K. Richter, and B. L. Pool-Zobel. 2007. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 18:736-745. https://doi.org/10.1016/j.jnutbio.2006.12.012
  28. Subcommittee on Poultry Nutrition, Board on Agriculture, National Research Council. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition. National Academy of Science. Washington, DC, USA.
  29. Wang, W. W., S. Y. Qiao, and D. F. Li. 2009. Amino acids and gut function. Amino Acids 37:105-110. https://doi.org/10.1007/s00726-008-0152-4
  30. Weisbrodt, N. W., T. A. Pressley, Y. F. Li, M. J. Zembowicz, S. C. Higham, A. Zembowicz, R. F. Lodato, and F. G. Moody. 1996. Decreased ileal muscle contractility and increased NOS II expression induced by lipopolysaccharide. Am. J. Physiol. 271:G454-G460.
  31. Wu, Q. J., Y. M. Zhou, Y. N. Wu, L. L. Zhang, and T. Wang. 2013. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet. Immunol. Immunopathol. 153:70-76. https://doi.org/10.1016/j.vetimm.2013.02.006
  32. Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poul. Sci. 82:1030-1036. https://doi.org/10.1093/ps/82.6.1030
  33. Yi, D., Y. Hou, L. Wang, B. Ding, Z. Yang, J. Li, M. Long, Y. Liu, and G. Wu. 2014. Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Br. J. Nutr. 111:46-54. https://doi.org/10.1017/S0007114513002171
  34. Zhang, W. H., Y. Jiang, Q. F. Zhu, F. Gao, S. F. Dai, J. Chen, and G. H. Zhou. 2011. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br. Poult. Sci. 52:292-301. https://doi.org/10.1080/00071668.2011.578121
  35. Zhang, X., L. Zhao, F. Cao, H. Ahmad, G. Wang, and T. Wang. 2013. Effects of feeding fermented Ginkgo biloba leaves on small intestinal morphology, absorption, and immunomodulation of early lipopolysaccharide-challenged chicks. Poult. Sci. 92:119-130. https://doi.org/10.3382/ps.2012-02645
  36. Zhu, H. L., L. L. Hu, Y. Q. Hou, J. Zhang, and B. Y.Ding. 2014. The effects of enzyme supplementation on performance and digestive parameters of broilers fed corn-soybean diets. Poult. Sci. 93:1704-1712. https://doi.org/10.3382/ps.2013-03626

Cited by

  1. Response of Ross 308 and 708 broiler strains in growth performance and lipid metabolism to diets containing tributyrate glycerides pp.1918-1825, 2017, https://doi.org/10.1139/CJAS-2017-0025
  2. Comparison of Tributyrin and Coated Sodium Butyrate as Sources of Butyric Acid for Improvement of Growth Performance in Ross 308 Broilers vol.17, pp.6, 2018, https://doi.org/10.3923/ijps.2018.290.294
  3. Effect of Partially-Protected Sodium Butyrate and Virginiamycin on Nutrient Digestibility, Metabolizable Energy, Serum Metabolites and Performance of Broiler Chickens vol.15, pp.8, 2015, https://doi.org/10.3923/ijps.2016.304.312
  4. Effect of Tributyrin Supplementation in Diet on Production Performance and Gastrointestinal Tract of Healthy Nursery Pigs vol.15, pp.11, 2015, https://doi.org/10.3923/pjn.2016.954.962
  5. Effects of Dietary Supplementation with Tributyrin and Coated Sodium Butyrate on Intestinal Morphology, Disaccharidase Activity and Intramuscular Fat of Lipopolysaccharide-Challenged Broilers vol.20, pp.4, 2015, https://doi.org/10.1590/1806-9061-2018-0787
  6. Tributyrin‐supplemented high‐soya bean meal diets of juvenile black sea bream, Acanthopagrus schlegelii: Study on growth performance and intestinal morphology and structure vol.51, pp.1, 2015, https://doi.org/10.1111/are.14355
  7. Effects of butyrate glycerides supplementation in high soybean meal diet on growth performance, intestinal morphology and antioxidative status of juvenile black sea bream, Acanthopagrus schlegelii vol.26, pp.1, 2020, https://doi.org/10.1111/anu.12984
  8. iTRAQ-based quantitative phosphoproteomics provides insights into the metabolic and physiological responses of a carnivorous marine fish (Nibea albiflora) fed a linseed oil-rich diet vol.228, pp.None, 2015, https://doi.org/10.1016/j.jprot.2020.103917
  9. Effects of N-acetylcysteine on the energy status and antioxidant capacity in heart and liver of cold-stressed broilers vol.33, pp.9, 2015, https://doi.org/10.5713/ajas.19.0542
  10. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers vol.100, pp.9, 2021, https://doi.org/10.1016/j.psj.2021.101343
  11. Dietary supplementation of tributyrin improved the growth, feed utilization and intestinal histology of grass carp (Ctenopharyngodon idella) vol.27, pp.6, 2015, https://doi.org/10.1111/anu.13336
  12. Effects of tributyrin on growth performance, immune response and intestinal barrier function of juvenile grass carp (Ctenopharyngodon idellus) fed diets with high cottonseed and rapeseed meal vol.27, pp.6, 2015, https://doi.org/10.1111/anu.13378