DOI QR코드

DOI QR Code

Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse

  • Do, Kyong-Tak (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University) ;
  • Cho, Hyun-Woo (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University) ;
  • Badrinath, Narayanasamy (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University) ;
  • Park, Jeong-Woong (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University) ;
  • Choi, Jae-Young (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University) ;
  • Chung, Young-Hwa (BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Lee, Hak-Kyo (Department of Animal Biotechnology, Chonbuk National University) ;
  • Song, Ki-Duk (Department of Animal Biotechnology, Chonbuk National University) ;
  • Cho, Byung-Wook (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
  • Received : 2015.05.29
  • Accepted : 2015.07.10
  • Published : 2015.12.01

Abstract

Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses.

Keywords

References

  1. Bustamante, C. D., A. Fledel-Alon, S. Williamson, R. Nielsen, M. T. Hubisz, S. Glanowski, D. M. Tanenbaum, T. J. White, J. J. Sninsky, R. D. Hernandez, D. Civello, M. D. Adams, M. Cargill, and A. G. Clark. 2005. Natural selection on protein-coding genes in the human genome. Nature 437:1153-1157. https://doi.org/10.1038/nature04240
  2. Echegaray, M. and M. A. Rivera. 2001. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance. Sports Med. 31:919-934. https://doi.org/10.2165/00007256-200131130-00003
  3. Eivers, S. S., B. A. McGivney, R. G. Fonseca, D. E. MacHugh, K. Menson, S. D. Park, J. L. Rivero, C. T. Taylor, L. M. Katz, and E. W. Hill. 2010. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics 40:83-93. https://doi.org/10.1152/physiolgenomics.00041.2009
  4. Fredericks, S., G. K. Merton, M. J. Lerena, P. Heining, N. D. Carter, and D. W. Holt. 2001. Cardiac troponins and creatine kinase content of striated muscle in common laboratory animals. Clin. Chim. Acta 304:65-74. https://doi.org/10.1016/S0009-8981(00)00409-5
  5. Gu, J., D. E. MacHugh, B. A. McGivney, S. D. E. Park, L. M. Katz, and E. W. Hill. 2010. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet. J. 42:569-575. https://doi.org/10.1111/j.2042-3306.2010.00181.x
  6. Hill, E. W., R. G. Fonseca, B. A. McGivney, J. Gu, D. E. MacHugh, and L. M. Katz. 2012. MSTN genotype (g. 66493737C/T) association with speed indices in Thoroughbred racehorses. J. Appl. Physiol. 112:86-90. https://doi.org/10.1152/japplphysiol.00793.2011
  7. Hill, E. W., J. Gu, B. A. McGivney, and D. E. MacHugh. 2010. Targets of selection in the Thoroughbred genome contain exercise‐relevant gene SNPs associated with elite racecourse performance. Anim. Genetics 41: 56-63. https://doi.org/10.1111/j.1365-2052.2010.02104.x
  8. Hinchcliff, K. W. and R. J. Geor. 2008. The Horse as an Athlete: A Physiological Overview. Equine Exercise Physiology: The Science of Exercise in the Athletic Horse. Saunders/Elsevier, Edinburgh, UK. p. 463.
  9. Korge, P., S. K. Byrd, and K. B. Campbell. 1993. Functional coupling between sarcoplasmic‐reticulum‐bound creatine kinase and $Ca^{2+}$‐ATPase. Eur. J. Biochem. 213:973-980. https://doi.org/10.1111/j.1432-1033.1993.tb17842.x
  10. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  11. McGivney, B. A., P. A. McGettigan, J. A. Browne, A. C. Evans, R. G. Fonseca, B. J. Loftus, A. Lohan, D. E. Machugh, B. A. Murphy, L. M. Katz, and E. W. Hill. 2010. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11:398. https://doi.org/10.1186/1471-2164-11-398
  12. Octura, J. E. R., K. J. Lee, H. W. Cho, R. S. Vega, J. Y. Choi, J. W. Park, T. S. Shin, S. K. Cho, B. W. Kim, and B. W. Cho. 2014. Elevation of blood creatine kinase and selected blood parameters after exercise in thoroughbred racehorses (Equus caballus L). Quest J. 2:7-13
  13. Schroder, W., A. Klostermann, and O. Distl. 2011. Candidate genes for physical performance in the horse. The Veterinary Journal 190:39-48. https://doi.org/10.1016/j.tvjl.2010.09.029
  14. Song, K. D., H. W. Cho, H. K. Lee, and B.W. Cho. 2014. Molecular Characterization and Expression Analysis of Equine Vascular Endothelial Growth Factor Alpha ($VEGF{\alpha}$) Gene in Horse (Equus caballus). Asian Australas. J. Anim. Sci. 27:743-748. https://doi.org/10.5713/ajas.2013.13821
  15. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  16. Tsung, S. H. 1976. Creatine kinase isoenzyme patterns in human tissue obtained at surgery. Clin. Chem. 22:173-175.
  17. Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger. 1992. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem. J. 281:21-40. https://doi.org/10.1042/bj2810021
  18. Zhou, D. Q., Y. Hu, G. Liu, L. Gong, Y. Xi, and L. Wen. 2006. Muscle-specific creatine kinase gene polymorphism and running economy responses to an 18-week 5000-m training programme. Br. J. Sports Med. 40:988-991. https://doi.org/10.1136/bjsm.2006.029744

Cited by

  1. Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions vol.53, pp.3, 2015, https://doi.org/10.1111/evj.13320