References
- Bustamante, C. D., A. Fledel-Alon, S. Williamson, R. Nielsen, M. T. Hubisz, S. Glanowski, D. M. Tanenbaum, T. J. White, J. J. Sninsky, R. D. Hernandez, D. Civello, M. D. Adams, M. Cargill, and A. G. Clark. 2005. Natural selection on protein-coding genes in the human genome. Nature 437:1153-1157. https://doi.org/10.1038/nature04240
- Echegaray, M. and M. A. Rivera. 2001. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance. Sports Med. 31:919-934. https://doi.org/10.2165/00007256-200131130-00003
- Eivers, S. S., B. A. McGivney, R. G. Fonseca, D. E. MacHugh, K. Menson, S. D. Park, J. L. Rivero, C. T. Taylor, L. M. Katz, and E. W. Hill. 2010. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics 40:83-93. https://doi.org/10.1152/physiolgenomics.00041.2009
- Fredericks, S., G. K. Merton, M. J. Lerena, P. Heining, N. D. Carter, and D. W. Holt. 2001. Cardiac troponins and creatine kinase content of striated muscle in common laboratory animals. Clin. Chim. Acta 304:65-74. https://doi.org/10.1016/S0009-8981(00)00409-5
- Gu, J., D. E. MacHugh, B. A. McGivney, S. D. E. Park, L. M. Katz, and E. W. Hill. 2010. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet. J. 42:569-575. https://doi.org/10.1111/j.2042-3306.2010.00181.x
- Hill, E. W., R. G. Fonseca, B. A. McGivney, J. Gu, D. E. MacHugh, and L. M. Katz. 2012. MSTN genotype (g. 66493737C/T) association with speed indices in Thoroughbred racehorses. J. Appl. Physiol. 112:86-90. https://doi.org/10.1152/japplphysiol.00793.2011
- Hill, E. W., J. Gu, B. A. McGivney, and D. E. MacHugh. 2010. Targets of selection in the Thoroughbred genome contain exercise‐relevant gene SNPs associated with elite racecourse performance. Anim. Genetics 41: 56-63. https://doi.org/10.1111/j.1365-2052.2010.02104.x
- Hinchcliff, K. W. and R. J. Geor. 2008. The Horse as an Athlete: A Physiological Overview. Equine Exercise Physiology: The Science of Exercise in the Athletic Horse. Saunders/Elsevier, Edinburgh, UK. p. 463.
-
Korge, P., S. K. Byrd, and K. B. Campbell. 1993. Functional coupling between sarcoplasmic‐reticulum‐bound creatine kinase and
$Ca^{2+}$ ‐ATPase. Eur. J. Biochem. 213:973-980. https://doi.org/10.1111/j.1432-1033.1993.tb17842.x -
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the
$2^{-{\Delta}{\Delta}CT}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262 - McGivney, B. A., P. A. McGettigan, J. A. Browne, A. C. Evans, R. G. Fonseca, B. J. Loftus, A. Lohan, D. E. Machugh, B. A. Murphy, L. M. Katz, and E. W. Hill. 2010. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11:398. https://doi.org/10.1186/1471-2164-11-398
- Octura, J. E. R., K. J. Lee, H. W. Cho, R. S. Vega, J. Y. Choi, J. W. Park, T. S. Shin, S. K. Cho, B. W. Kim, and B. W. Cho. 2014. Elevation of blood creatine kinase and selected blood parameters after exercise in thoroughbred racehorses (Equus caballus L). Quest J. 2:7-13
- Schroder, W., A. Klostermann, and O. Distl. 2011. Candidate genes for physical performance in the horse. The Veterinary Journal 190:39-48. https://doi.org/10.1016/j.tvjl.2010.09.029
-
Song, K. D., H. W. Cho, H. K. Lee, and B.W. Cho. 2014. Molecular Characterization and Expression Analysis of Equine Vascular Endothelial Growth Factor Alpha (
$VEGF{\alpha}$ ) Gene in Horse (Equus caballus). Asian Australas. J. Anim. Sci. 27:743-748. https://doi.org/10.5713/ajas.2013.13821 - Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
- Tsung, S. H. 1976. Creatine kinase isoenzyme patterns in human tissue obtained at surgery. Clin. Chem. 22:173-175.
- Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger. 1992. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem. J. 281:21-40. https://doi.org/10.1042/bj2810021
- Zhou, D. Q., Y. Hu, G. Liu, L. Gong, Y. Xi, and L. Wen. 2006. Muscle-specific creatine kinase gene polymorphism and running economy responses to an 18-week 5000-m training programme. Br. J. Sports Med. 40:988-991. https://doi.org/10.1136/bjsm.2006.029744
Cited by
- Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions vol.53, pp.3, 2015, https://doi.org/10.1111/evj.13320