DOI QR코드

DOI QR Code

High Temperature Stability of Nitride Ceramic Materials in LiF-NdF3-Nd2O3 Molten Salts System

LiF-NdF3-Nd2O3 용융염에서 질화물계 세라믹재료의 고온안정성

  • Kwon, Sukcheol (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Young-Jun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Ryu, Hong-Youl (Division of Earth and Environmental Science, Korea Basic Science Institute) ;
  • Lee, Go Gi (Department of Advanced Metallic Materials Research, Research Institute of Industrial Science and Technology) ;
  • Jo, Sung Koo (Department of Advanced Metallic Materials Research, Research Institute of Industrial Science and Technology) ;
  • Lee, Jong-Hyeon (Graduate School of Energy Science and Technology, Chungnam National University)
  • 권숙철 (충남대학교 에너지과학기술대학원) ;
  • 이영준 (충남대학교 에너지과학기술대학원) ;
  • 류홍열 (한국기초과학지원연구원) ;
  • 이고기 (포항산업과학기술연구원) ;
  • 조성구 (포항산업과학기술연구원) ;
  • 이종현 (충남대학교 에너지과학기술대학원)
  • Received : 2015.09.22
  • Accepted : 2015.10.27
  • Published : 2015.12.27

Abstract

Nd-Fe-B permanent magnets have been used in a wide variety of applications because of their high magnetic flux density. So, demand for neodymium has been increasing in worldwide. In this study, an electrowinning process was performed in $LiF-NdF_3-Nd_2O_3$ high temperature molten salts. However, a corrosion resistant material for use in the molten salt must be found for stable operation because of the harsh corrosion environment of the electrowinning process. Therefore, for this paper, boron nitride(BN), aluminum nitride(AlN), and silicon nitride($Si_3N_4$) were selected as protective and structural materials in the high temperature electrolyte. To investigate the characteristics of BN, AlN, and $Si_3N_4$, in molten salts, materials were immersed in the molten salts for 24, 72, 120, and 192 hours. Also, surface condition and stability were investigated by SEM and EDS and corrosion products were calculated by HSC chemistry. As a result, among BN, AlN, and $Si_3N_4$, AlN was found to show the best protective material properties.

Keywords

References

  1. G. J. Kipouros and R. A. Sharma, J. Electrochem. Soc., 137, 3333 (1990). https://doi.org/10.1149/1.2086218
  2. E. Stefanidaki, C. Hasiotis and C. Kontoyannis, Electrochim. Acta, 46, 2665 (2001). https://doi.org/10.1016/S0013-4686(01)00489-3
  3. H. Y. Ryu, J. H. Lee, W. G. Kim, H. H. Nersisyan, G. G. Lee, S. K. Jo, H. H. Lee and I. S. Hwang, Rare Met., 34, 111 (2015). https://doi.org/10.1007/s12598-014-0241-3
  4. S. H. Cho, S. S. Hong, D. S. Kang, M. S. Jeong, B. H. Park, J. M. Hur and H. S. Lee, J. Korean Radioact. Waste Soc., 8, 33 (2010).
  5. M. A. Uusitalo, P. M. J. Vuoristo and T. A.Mantyla, Corros. Sci., 46, 1311, (2004). https://doi.org/10.1016/j.corsci.2003.09.026
  6. R. A. Rapp, Corros. Sci., 44, 209 (2002). https://doi.org/10.1016/S0010-938X(01)00057-9
  7. J. G. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo and J. Porcayo-Calderon, Mater. Sci. Eng. A, 435-436, 258 (2006). https://doi.org/10.1016/j.msea.2006.06.138
  8. M. Spiegel, P. Biedenkopf and H. J. Grabke, Corros. Sci., 39, 1193 (1997). https://doi.org/10.1016/S0010-938X(97)00020-6
  9. B. Zhu and G. Lindbergh, Electrochim. Acta, 46, 2593 (2001). https://doi.org/10.1016/S0013-4686(01)00471-6
  10. B. P. Mohanty and D. A. Shores, Corros. Sci., 46, 2893 (2004). https://doi.org/10.1016/j.corsci.2004.04.013
  11. A. Ruh and M. Spiegel, Corros. Sci., 48, 679 (2006). https://doi.org/10.1016/j.corsci.2005.02.015
  12. J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell and A. G. Raraz, Oxid. Met., 55, 1 (2001). https://doi.org/10.1023/A:1010333407304
  13. J. Eichler and C. Lesniak, J. Eur. Ceram. Soc., 28, 1105 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
  14. Hugh O. Pierson, Handbook of refractory carbides and nitrides ; properties, characteristics, processing, and applications, Noyes publications, pp. 238-241 (1996).
  15. W. S. So and K. H. Baik, Korean J. Mater. Res., 21, 106 (2011). https://doi.org/10.3740/MRSK.2011.21.2.106
  16. A. Roine, HSC Chemistry 6.1, Outotkumpu Research Oy, Pori, Finland (2006).
  17. S. H. Cho, J. H. Lim, J. H. Chung, J. M. Hur, C. S. Seo and S. W. Park, J. Korean Ind. Eng. Chem., 15, 913 (2004).
  18. J. A. Dean, Lange's handbook of chemistry, p. 329-341, McGRAW-HILL, INC., New York, (1999).
  19. V. L. Cherginets, V. N. Baumer, S. S. Galkin, L. V. Glushkova, T. P. Rebrova and Z. V. Shtitelman, Inorg. Chem., 45, 7367 (2006). https://doi.org/10.1021/ic060181r
  20. X. Li, L. Zhang and X. Yin, Ceram. Int., 39, 3035 (2013). https://doi.org/10.1016/j.ceramint.2012.09.082
  21. Y. P. Zaikov, A. A. Redkin, A. A. Apisarov, I. V. Korzun, N. P. Kulik, A. V. Isakov, A. A. Kataev and O. V. Chemezov, J. Chem. Eng. Data, 58, 932 (2013). https://doi.org/10.1021/je301195x