DOI QR코드

DOI QR Code

Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells

염료감응형 태양전지의 비백금 상대전극을 위한 Co가 내재된 Graphitic 다공성 탄소나노섬유

  • An, Hye Lan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kang, Hye-Rhin (YongHwa Girl's High School) ;
  • Sun, Hyo Jeong (YongHwa Girl's High School) ;
  • Han, Ji Ho (YongHwa Girl's High School) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 안혜란 (서울과학기술대학교 신소재공학과) ;
  • 강혜린 (용화여자고등학교) ;
  • 선효정 (용화여자고등학교) ;
  • 한지호 (용화여자고등학교) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2015.09.16
  • Accepted : 2015.10.23
  • Published : 2015.12.27

Abstract

Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, $12.88mA/cm^2$) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs($12.00mA/cm^2$, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.

Keywords

References

  1. M. Gratzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  2. J-Y. Lin, J-H. Lian and T-C. Wei, Electrochem. Solid State Lett., 14, D41 (2011). https://doi.org/10.1149/1.3533917
  3. D. Sebastian, V. Baglio, M. Girolamo, R. Moliner, M. J. Lazaro and A. S. Arico, J. Power Sourc., 250, 242 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.142
  4. T. Battumur, S. H. Mujawar, Q. T. Truong, S. B. Ambade, D. S. Lee, W. J. Lee, S-H. Han and S-H. Lee, Curr. Appl. Phys., 12, e49 (2012). https://doi.org/10.1016/j.cap.2011.04.028
  5. H-J. Shin, S. S. Jeon and S. S. Im, Synth. Met., 161, 1284 (2011). https://doi.org/10.1016/j.synthmet.2011.04.024
  6. S. B. Yoon, G. S. Chai, S. K. Kang, J-S. Yu, K. P. Gierszal and M. Jaroniec, J. Am. Chem. Soc., 127, 4188 (2005). https://doi.org/10.1021/ja0423466
  7. M. N. Patel, X. Wang, D. A. Slanac, D. A. Ferrer, S. Dai, K. P. Johnston and K. J. Stevenson, J. Mater. Chem., 22, 3160 (2012). https://doi.org/10.1039/c1jm14513d
  8. O. P. Krivoruchko, N. I. Maksimova, V. I. Zaikovskii and A. N. Salanov, Carbon, 38, 1075 (2000). https://doi.org/10.1016/S0008-6223(99)00225-0
  9. M. Sevilla and A. B. Fuertes, Carbon, 44, 468 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
  10. H. L. An, G-H. An and H-J Ahn, J. Alloys Compd., 645, 317 (2015). https://doi.org/10.1016/j.jallcom.2015.05.105
  11. Y-J. Lee, B-R. Koo and H-J. Ahn, J. Korean Powder Metall. Inst., 21, 360 (2014). https://doi.org/10.4150/KPMI.2014.21.5.360
  12. H-I. Joh, H. K. Song, K-B. Yi and S. H. Lee, Carbon, 53, 399 (2013). https://doi.org/10.1016/j.carbon.2012.10.033
  13. Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012). https://doi.org/10.1021/am3003523
  14. Y. Xiao, G. Han, H. Zhou, Y. Li and J-Y. Lin, Electrochim. Acta, 155, 103 (2015). https://doi.org/10.1016/j.electacta.2015.01.004
  15. P. Li, J. Wu, J. Lin, M. Huang, Y. Huang and Q. Li, Sol. Energy, 83, 845 (2009). https://doi.org/10.1016/j.solener.2008.11.012
  16. F. Gong, H. Wang, X. Xu, G. Zhou and Z-S. Wang, J. Am. Chem. Soc., 134, 10953 (2012). https://doi.org/10.1021/ja303034w
  17. J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energy Rev., 16, 5848 (2012). https://doi.org/10.1016/j.rser.2012.04.044
  18. M. Gratzel, Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  19. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181, 172 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.029
  20. H-R. An and H-J. Ahn, Korean J. Mater. Res., 24, 565 (2014). https://doi.org/10.3740/MRSK.2014.24.10.565

Cited by

  1. Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells vol.26, pp.11, 2016, https://doi.org/10.3740/MRSK.2016.26.11.649