DOI QR코드

DOI QR Code

A Study on Artificial Radionuclides(134Cs, 137Cs and 239+240Pu) Distribution in the Sediment from Lake Euiam

의암호 퇴적물 내 인공방사성동위원소 (134Cs, 137Cs, 239+240Pu) 분포특성 연구

  • 김성환 (한국표준과학연구원 방사선표준센터) ;
  • 이상한 (한국표준과학연구원 방사선표준센터) ;
  • 오정석 (한국표준과학연구원 방사선표준센터) ;
  • 최종기 (한국표준과학연구원 방사선표준센터) ;
  • 강태구 (국립환경과학원 수질관리통합센터)
  • Received : 2015.10.07
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

The objective of this study is to identify the radionuclide distribution in public water by carrying out the analysis of artificial radionuclides($^{134}Cs$, $^{137}Cs$, $^{239+240}Pu$), natural radionuclide($^{210}Pb$) and TOC in the lake Euiam sediment in Chuncheon, South Korea. The $^{134}Cs$ concentration in all lake sediments showed below MDA values, and the $^{137}Cs$ concentration in lake sediment were ranged from MDA to $8.79Bq{\cdot}kg^{-1}-dry$. The $^{137}Cs$ concentrations in surface sediment were reported to be 2.4 to $4.2Bq{\cdot}kg^{-1}-dry$. The lowest concentration of $^{137}Cs$ was reported at St. 4 and the highest concentration was reported at St. 3, respectively. The $^{239+240}Pu$ concentration in lake sediment were ranged from 0.049 to $0.47Bq{\cdot}kg^{-1}-dry$. The lowest concentration was reported at St. 2 and the highest concentration was reported at St. 3. The correlation(r) between the $^{239+240}Pu$ concentration and $^{137}Cs$ concentration in lake sediment presented higher values (0.54 to 0.97) and this suggests the behavior and origin of $^{137}Cs$ is identical to the $^{239+240}Pu$ in the sediment. The $^{134}Cs$ concentration below MDA value and the $^{239+240}Pu/^{137}Cs$ ratio(mean value of 0.041) indicated that the artificial radionuclides in the sediment were originated from global fallout by the atmospheric testing of nuclear weapons conducted by former USSR and U.S.A, but not from the Fukushima Daiichi NPP accident. The sedimentation rate derived from $^{210}Pb$ age-dating method at St. 2 is calculated to be $0.31{\pm}0.06cm{\cdot}y^{-1}$. This value is similar to the value ($0.41{\pm}0.05cm{\cdot}y^{-1}$) estimated from the $^{137}Cs$ maximum peak produced from early 1960's. The content of TOC in lake Euiam sediments varied from 0.20 to 13.01%. While the highest correlation between TOC and $^{137}Cs$ concentration in the sediment were found at St. 1, the others presented the low correlation.

공공수역 내 방사성물질 분포특성 파악을 위하여 춘천시 의암호 퇴적물 내 인공방사성핵종인 $^{134}Cs$, $^{137}Cs$, $^{239+240}Pu$과 자연방사성동위원소인 $^{210}Pb$을 분석하였고, 퇴적물 내 유기물의 특성을 파악하기 위하여 총 유기탄소(total organic carbon, TOC)를 분석하였다. 의암호 퇴적물 내 $^{134}Cs$ 농도는 4지점 모두 minimum detectable activity(MDA) 미만으로 나타났으며, $^{137}Cs$ 농도는 $MDA{\sim}8.79Bq{\cdot}kg^{-1}-dry$으로 나타났다. 표층 내 $^{137}Cs$의 농도는 $2.4{\sim}4.2Bq{\cdot}kg^{-1}-dry$의 범위를 나타냈고, St. 4에서 최소값, St. 3에서 최대값을 보였다. 의암호 퇴적물 내 $^{239+240}Pu$ 농도는 $0.049{\sim}0.47Bq{\cdot}kg^{-1}-dry$의 농도를 보였고, St. 2에서 최소값이, St. 3에서 최대값이 나타났다. $^{239+240}Pu$$^{137}Cs$ 농도의 상관관계 (r)는 0.54~0.97로 이들 두 핵종의 퇴적물 내 거동과 기원이 유사한 것으로 사료된다. $^{134}Cs$의 농도가 MDA 미만으로 검출된 점과 $^{239+240}Pu/^{137}Cs$의 평균값 0.041이 과거 대기 핵실험기원의 농도 비와 비슷한 값이 나타나는 점으로 의암호 퇴적물 내 인공방사성동위원소 ($^{134}Cs$, $^{137}Cs$, $^{239+240}Pu$)의 기원은 후쿠시마 사고가 아닌 과거 핵실험에 인한 낙진의 영향으로 사료된다. 의암호 퇴적물 내 $^{210}Pb$의 결과를 이용하여 퇴적물의 퇴적률을 산출한 결과, St. 2에서 $0.31{\pm}0.06cm{\cdot}y^{-1}$의 퇴적률을 나타냈으며, 이는 $^{137}Cs$의 퇴적물 내 peak를 1963년으로 가정하였을 때 측정된 퇴적률, $0.41{\pm}0.05cm{\cdot}y^{-1}$와 불확도($2{\sigma}$)의 범위에서 유사한 값으로 나타내었다. 의암호 퇴적물 내 TOC는 0.20~13.01%의 값이 나타났으며, 퇴적물 내 TOC와 $^{137}Cs$의 상관관계는 St. 1에서 다른 지점에 비해 높게 나타났다.

Keywords

References

  1. Lee MH, Lee CW, Hong KH, Choi YH, Boo BH. Depth distribution of $^{239+240}Pu$ and $^{137}Cs$ in soils of South Korea. J Radioanal Nucl Ch. 1996;204(1): 135-144. https://doi.org/10.1007/BF02060874
  2. Lee MH, Lee CW. Distribution and characteristics of $^{239+240}Pu$ and $^{137}Cs$ in the soil of Korea. J Environ Radioactiv. 1997;37(1):1-16. https://doi.org/10.1016/S0265-931X(96)00080-X
  3. Go SH. Studies on the soil sediment characteristics using $^{137}Cs$ in the crater lake, Baengnokdam of Mt. Halla. Master's Thesis. Jeju National University. 2010.
  4. Kim KH, Son SK, Son JW, Ju SJ. Methodologicalcomparison of the quantification of total carbonand organic carbon in marine sediment. Journal of the Korean Society for Marine Environment & Energy. 2006;9(4):235-242.
  5. Go SH. Studies on the soil sediment characteristicsusing $^{137}Cs$ in the crater lake, Baengnokdamof Mt. Halla. Master's Thesis. Jeju NationalUniversity. 2010.
  6. Lee SH, Lee SA, Lee JM, Park TS, Lee KB. Measurement of $^{137}Cs$ in the soil in Korea by low-level background gamma-ray spectrometer. J Radioanal Nucl Ch. 2013;296(2):721-725. https://doi.org/10.1007/s10967-012-2031-4
  7. Ritchie JC, McHenry JR. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J Environ Qual. 1990;19:215-233.
  8. Directorate of radiological protection and human health. Assessment on the 66th day of projected external doses for populations living in the north-west fallout zone of the Fukushima nuclear accident. Report DRPH/2011-10. 2011.
  9. Chillrud SN, Bopp RF, Simpson HJ, Ross JM, Shuster EL, Chaky DA, Walsh DC, Choy CC, Tolley LR, Yarme A. Twentieth century atmospheric metal fluxes into central park lake, New York city. Environ Sci Technol. 1999;33(5): 657-662. https://doi.org/10.1021/es9807892
  10. Kirchner G. $^{210}Pb$ as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models. J Environ Radioactiv. 2011;102:490-494. https://doi.org/10.1016/j.jenvrad.2010.11.010
  11. Park GJ. Behavior and distribution of radionuclides in marine sediments. Ph. D. Dissertation. Kyungpook National University. 2004.

Cited by

  1. 금강수계 퇴적물 중 천연 방사성핵종 분포 조사 vol.30, pp.5, 2015, https://doi.org/10.5806/ast.2017.30.5.262
  2. Improvement on Analytical Method of Residual Propineb in Red bean (Vigna angularis Willd.) Rich in Protein vol.23, pp.1, 2015, https://doi.org/10.7585/kjps.2018.23.1.17