References
- Andre, J., Beale, R. and Baptista, A. (2012), "A survey of failures of bridge falsework systems since 1970", Proceedings of the ICE - Forensic Engineering, 65(4), 161-172.
- Andre, J., Beale, R. and Baptista, A. (2013), "Recent advances and existing challenges in the design of bridge falsework systems", Civil Eng. Environ. Syst., 30(2), 130-145. https://doi.org/10.1080/10286608.2012.733374
- Andre, J., Beale, R. and Baptista, A. (2015a), "Finite element models of bridge falsework systems", Struct. Eng. Mech. (under Review)
- Andre, J., Beale, R. and Baptista, A. (2015b), "Experimental analysis of bridge falsework Cuplok joints", Steel Compos. Struct. (under Review)
- Andre, J., Beale, R. and Baptista, A. (2015c), "Risk analysis of bridge falsework Cuplok systems", Struct. Eng. Mech. (under Review)
- Andre, J. (2014), "Determination of the main parameters affecting the performance of bridge falsework systems", PhD Thesis, Oxford Brookes University, Oxford, UK.
- Baker, J., Schubert, M. and Faber, M. (2008), "On the assessment of robustness", Struct. Saf., 30(3), 253-267. https://doi.org/10.1016/j.strusafe.2006.11.004
- Baptista, A. and Muzeau, J. (2001), "Analytical formulation of the design of circular hollow sections in the elastoplastic regime", Proceedings of III Portuguese National Conference of Steel and Composite Construction, Aveiro, Portugal, December. (in Portuguese)
- Bazant, Z., Le, J., Greening, F. and Benson, D. (2008), "What did and did not cause collapse of World Trade Center Twin Towers in New York?", J. Eng. Mech., 134(10), 892-906. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:10(892)
- Bazant, Z. and Verdure, M. (2007), "Mechanics of progressive collapse: Learning from World Trade Center and building demolitions", J. Eng. Mech., 133(3), 308-319. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(308)
- Bazant, Z. and Zhou, Y. (2002), "Why did the World Trade Center collapse? - simple analysis", J. Eng. Mech., 128(1), 2-6. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(2)
- Beale, R. (2014), "Scaffold research - a review", J. Constr. Steel Res., 98, 188-200. https://doi.org/10.1016/j.jcsr.2014.01.016
- BS EN 1990 (2002), Eurocode 0: Basis of Structural Design, UK.
- BS EN 1991-1-7 (2006), Eurocode 1: Actions on Structures - Part 1-7: General Actions - Accidental Actions, UK.
- Chandrangsu, T. and Rasmussen, K. (2011), "Structural modelling of support scaffold systems", J. Constr. Steel Res., 67(5), 866-875. https://doi.org/10.1016/j.jcsr.2010.12.007
- CEB (1993), CEB-FIP Model Code 90, Thomas Telford, London, UK.
- Dusenberry, D. and Hamburger, R. (2006), "Practical means for energy-based analyses of disproportionate collapse potential", J. Perform. Construct. Facil., 20(4), 336-348. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(336)
- Ellingwood, B., Smilowitz, R., Dusenberry, D., Duthinh, D., Lew, H. and Carino, N. (2007), Best Practices for Reducing the Potential for Progressive Collapse in Buildings, National Institute of Standards and Technology (NIST), USA.
- Faber, M. (2009), Risk and Safety in Engineering Course Lecture Notes, Swiss Federal Institute of Technology Zurich (ETHZ), Switzerland.
- Fang, Z. (2007), "Energy-based approach to structural robustness", J. Southwest Jiaotong Univ., 15(4), 319-234.
- Frangopol, D. and Curley, J. (1987), "Effects of damage and redundancy on structural reliability", J. Struct. Eng., 113(7), 1533-1549. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:7(1533)
- Fu, G. and Frangopol, D. (1990), "Balancing weight, system reliability and redundancy in a multiobjective optimization framework", Struct. Saf., 7(2-4), 165-175. https://doi.org/10.1016/0167-4730(90)90066-X
- Gardner, L. (2008), "The continuous strength method", Proceedings of the ICE - Structures and Buildings, 161(3), 127-133.
- ISO 2394 (2002), General Principles on Reliability for Structures, Switzerland.
- Knoll, F. and Vogel, T. (2009), Design for Robustness, International Association for Bridge and Structural Engineering (IABSE), Zurich, Switzerland.
- Korol, R. and Sivakumaran, K. (2014), "Reassessing the plastic hinge model for energy dissipation of axially loaded columns", J. Struct., 2014(1), 1-7.
- Narasimhan, H. and Faber, M. (2009), "Categorisation and assessment of robustness related provisions in European standards", Proceedings of the Joint Workshop of COST Actions TU0601 and E55, Ljubljana, Slovenia, September.
- Smith, J. (2006), "Structural robustness analysis and the fast fracture analogy", Struct. Eng. Int. (SEI), 16(2), 18-123. https://doi.org/10.2749/101686606777962765
- Starossek, U. and Haberland, M. (2008), "Measures of structural robustness - Requirements & applications", Proceedings of the ASCE SEI 2008 Structures Congress - Crossing Borders, Vancouver, Canada, April.
- Starossek, U. and Haberland, M. (2009), "Evaluating measures of structural robustness", Proceedings of the Structures Congress 2009: Don't Mess with Structural Engineers - Expanding Our Role, Austin, Texas, May.
- Starossek, U. and Wolff, M. (2005), "Progressive collapse: design strategies", Proceedings of IABSE Symposium, Structures and Extreme Events, Lisbon, Portugal, September.
- Starossek, U. (2006), "Progressive collapse of structures: Nomenclature and procedures", Struct. Eng. Int. (SEI), 16(2), 113-117. https://doi.org/10.2749/101686606777962477
- Starossek, U. (2009), Progressive Collapse of Structures, Thomas Telford, London, UK.
- Todinov, M. (2007), Risk-Based Reliability Analysis and Generic Principles for Risk Reduction, Elsevier, Amsterdam, Netherlands.
- USDOD (2010), Unified Facilities Criteria (UFC), Design of Buildings to Resist Progressive Collapse, United States of America Defence Department, USA.
Cited by
- Risk analysis of bridge falsework cuplok systems vol.13, pp.10, 2017, https://doi.org/10.1080/15732479.2016.1265991
- A new damage index for seismic fragility analysis of reinforced concrete columns vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.875
- Experimental analysis of bridge falsework Cuplok systems vol.171, pp.9, 2018, https://doi.org/10.1680/jstbu.16.00081
- Analysis on the Time-Varying Fragility of Offshore Concrete Bridge vol.2019, pp.1099-0526, 2019, https://doi.org/10.1155/2019/2739212
- A method to evaluate the risk-based robustness index in blast-influenced structures vol.12, pp.1, 2015, https://doi.org/10.12989/eas.2017.12.1.047
- A correction method for objective seismic damage index of reinforced concrete columns vol.21, pp.6, 2015, https://doi.org/10.12989/cac.2018.21.6.741
- Systematic Reliability-Based Approach to Progressive Collapse vol.4, pp.4, 2015, https://doi.org/10.1061/ajrua6.0000990
- Numerical analysis of bridge falsework Cuplok systems vol.172, pp.3, 2015, https://doi.org/10.1680/jstbu.16.00082
- Analysis on damage of RC frames retrofitted with buckling-restrained braces based on estimation of damage index vol.70, pp.6, 2015, https://doi.org/10.12989/sem.2019.70.6.781
- Proposal of Guidelines for the Evolution of Robustness Framework in the Future Generation of Eurocodes vol.29, pp.3, 2015, https://doi.org/10.1080/10168664.2019.1599706