References
- Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Prob. Eng., Article ID 871815, 14.
- Akbas, S.D. (2013), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", IJETT, 4(10), 4590-4597.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Eur. J. Mech. A-Solid., 42, 112-124. https://doi.org/10.1016/j.euromechsol.2013.05.002
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130. https://doi.org/10.12989/sem.2014.51.1.111
- Demir, E., Callioglu, H. and Sayer, M. (2013), "Free vibration of symmetric FG sandwich Timoshenko beam with simply supported edges", Indian J. Eng. Mater. S, 20(6), 515-521.
- Elishakoff, I. and Candan, S. (2001), "Apparently first closed-form solution for vibrating: inhomogeneous beams", Int. J. Solid. Struct., 38(19), 3411-3441. https://doi.org/10.1016/S0020-7683(00)00266-3
- Ferezqi, H.Z., Tahani, M. and Toussi, H.E. (2010), "Analytical approach to free vibrations of cracked Timoshenko beams made of functionally graded materials", Mech. Adv. Mater. Struct., 17(5), 353-365. https://doi.org/10.1080/15376494.2010.488608
- Gibson, R.F. (1994), Principles of Composite Materials, First Edition, McGraw-Hill, New York.
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2011), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94(1), 68-74. https://doi.org/10.1016/j.compstruct.2011.07.016
- Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175
- Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. https://doi.org/10.1016/j.compscitech.2003.11.002
- Kisa, M. and Brandon, J. (2000), "The effects of closure of cracks on the dynamics of a cracked cantilever beam", J. Sound. Vib., 238(1), 1-18. https://doi.org/10.1006/jsvi.2000.3099
- Kisa, M., Brandon, J. and Topcu, M. (1998), "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", Comput. Struct., 67(4), 215-223. https://doi.org/10.1016/S0045-7949(98)00056-X
- Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009), "Nonlinear vibration of edge cracked functionally graded Timoshenko beams", J. Sound. Vib., 324(3-5), 962-982. https://doi.org/10.1016/j.jsv.2009.02.023
- Li, S., Hu, J.J., Zhai, C.H. and Xie, L.L. (2013), "A unified method for modeling of axially and/or transversally functionally graded beams with variable cross-section profile", Mech. Bas. Des. Struc., 41(2), 168-188. https://doi.org/10.1080/15397734.2012.709466
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Matbuly, M.S., Ragb, O. and Nassar, M. (2009), "Natural frequencies of a functionally graded cracked beam using the differential quadrature method", Appl. Math. Comput., 215(6), 2307-2316. https://doi.org/10.1016/j.amc.2009.08.026
- Petyt, M. (1990), Introduction toFfinite Element Vibration Analysis, First Edition, Cambridge University Press, Cambridge.
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B-Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B-Eng., 42(4), 801-808.
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020
- Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct,. 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Wattanasakulpong, N., Prusty, G.B. and Kelly, D.W. (2013), "Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading", J. Sandw. Struct. Mater., 15(5), 583-606. https://doi.org/10.1177/1099636213495751
- Wei, D., Liu, Y.H. and Xiang, Z.H. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020
- Yan, T., Kitipornchai, S. and Yang, J. (2011), "Parametric instability of functionally graded beams with an open edge crack under axial pulsating excitation", Compos. Struct., 93(7), 1801-1808. https://doi.org/10.1016/j.compstruct.2011.01.019
- Yan, T., Kitipornchai, S., Yang, J. and He, X.Q. (2011), "Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load", Compos. Struct., 93(11), 2992-3001. https://doi.org/10.1016/j.compstruct.2011.05.003
- Yan, T. and Yang, J. (2011), "Forced vibration of edge-cracked functionally graded beams due to a transverse moving load", Procedia Eng., 14, 3293-3300. https://doi.org/10.1016/j.proeng.2011.07.416
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
Cited by
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Vibration and damping behaviors of symmetric layered functional graded sandwich beams vol.62, pp.6, 2015, https://doi.org/10.12989/sem.2017.62.6.771
- A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation vol.67, pp.3, 2015, https://doi.org/10.12989/sem.2018.67.3.219
- Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations vol.72, pp.4, 2015, https://doi.org/10.12989/sem.2019.72.4.525
- Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory vol.8, pp.4, 2019, https://doi.org/10.12989/amr.2019.8.4.313
- Free vibration analysis of cracked functionally graded non-uniform beams vol.7, pp.1, 2015, https://doi.org/10.1088/2053-1591/ab6ad1
- Free Vibration Analysis of a Functionally Graded Material Coated Aluminum Beam vol.58, pp.2, 2015, https://doi.org/10.2514/1.j059002
- Free vibration and harmonic response of cracked frames using a single variable shear deformation theory vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.033
- Free vibration analysis of a single edge cracked symmetric functionally graded stepped beams vol.23, pp.16, 2020, https://doi.org/10.1177/1369433220939214
- Free Vibration Analysis of Sandwich Beams with Functionally-Graded-Cores by Complementary Functions Method vol.58, pp.12, 2020, https://doi.org/10.2514/1.j059587
- Free vibration of multi-cracked beams vol.79, pp.4, 2015, https://doi.org/10.12989/sem.2021.79.4.441