Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Yim, J.S., Wang, M.L., Shin, S.W., Yun, C.B., Jung, H.J., Kim, J.T. and Eem, S.H. (2013), "Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges", Smart Struct. Syst., 12(3-4), 465-482. https://doi.org/10.12989/sss.2013.12.3_4.465
- Casas, J.R. (1994), "A combined method for measuring cable forces: The Cable-Stayed Alamillo Bridge, Spain", Struct. Eng. Int., 4(4), 235-240. https://doi.org/10.2749/101686694780601700
- Fang, Z. and Wang, J.Q. (2012), "Practical formula for cable tension estimation by vibration meyhod", J. Bridge Eng., ASCE, 17(1), 161-164. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000200
- Ricciardi, G. and Saitta, F. (2008), "A continuous vibration analysis model for cables with sag and bending stiffness", Eng. Struct., 30(5), 1459-1472. https://doi.org/10.1016/j.engstruct.2007.08.008
- Nam, H. and Nghia, N.T. (2011), "Estimation of cable tension using measured natural frequencies", Procedia Eng., 14, 1510-1517. https://doi.org/10.1016/j.proeng.2011.07.190
- Zui, H., Shinke, T. and Namita Y.H.(1996), "Practical formulas for estimation of the cable tension by vibration method", J. Struct. Eng., ASCE, 124(10), 651-656.
- Yen, W.H.P., Mehrabi, A.B. and Tabatabai, H. (1997), "Evaluation of stay cable tension using a nondestructive vibration technique", Proceedings of the 15th Structures Congress, ASCE, New York, USA, April.
- Mehrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng., ASCE, 124(11), 1313-1322. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313)
- Dan, D., Chen, Y. and Yan, X. (2014), "Determination of cable force based on the corrected numerical solution of cable vibration frequency equations", Struct. Eng. Mech., 50(1), 37-52. https://doi.org/10.12989/sem.2014.50.1.037
- Kim, B.H., Park, T., Shin, H. and Yoon, T.Y. (2007), "A comparative study of the tension estimation methods for cable supported bridges", Steel Struct., 7(1), 77-84.
- Kim, M.Y., Kwon, S.D. and Kim, N.I. (2000), "Analytical and numerical study on free vertical vibration of shear-flexible suspension bridges", J. Sound Vib., 238(1), 65-84. https://doi.org/10.1006/jsvi.2000.3079
- McKenna, P.J. and Walter, W. (1987), "Nonlinear oscillations in a suspension bridge", Arch. Ration. Mech. An., 98 (2), 167-177. https://doi.org/10.1007/BF00251232
- Lazer, A.C. and McKenna, P.J. (1990), "Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis", SIAM Rev., 32(4), 537-578. https://doi.org/10.1137/1032120
- Glover, J., Lazer, A.C. and McKenna, P.J. (1989), "Existence and stability of large-scale nonlinear oscillations in suspension bridges", Z. Angew. Math. Phys., 40(2), 172-200. https://doi.org/10.1007/BF00944997
- Holubova-Tajcova, G. (1999), "Mathematical modeling of suspension bridges", Math. Comput. Simulat., 50(1-4),183-197. https://doi.org/10.1016/S0378-4754(99)00071-3
- McKenna, P.J. and Moore, K.S. (2002), "The global structure of periodic solutions to a suspension bridge mechanical model", IMA J. Appl. Math., 67(5), 459-478. https://doi.org/10.1093/imamat/67.5.459
- Humphreys, L.D. and McKenna, P.J. (2005), "When a mechanical system goes nonlinear: Unexpected responses to low-periodic shaking", Math. Assoc. Am., 112(10), 861-875. https://doi.org/10.2307/30037627
- Turmo, J. and Luco, J.E. (2010), "Effect of hanger flexibility on dynamic response of suspension bridges", J. Eng. Mech., ASCE, 136(12), 1444-1459. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000185
- Konstantakopoulos, T.G. and Michaltsos, G.T. (2010), "A mathematical model for a combined cable system of bridges", Eng. Struct., 32(9), 2717-2728. https://doi.org/10.1016/j.engstruct.2010.04.042
- Luco, J.E. and Turmo, J. (2010), "Linear vertical vibrations of suspension bridges: a review of continuum models and some new results", Soil Dyn Earthq. Eng., 30(9), 769-781. https://doi.org/10.1016/j.soildyn.2009.10.009
- Ni, Y.Q., Ko, J.M. and Zheng, G. (2002), "Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity", J. Sound Vib., 257(2), 301-319. https://doi.org/10.1006/jsvi.2002.5060
- Kim, B.H. and Park, T. (2007), "Estimation of cable tension using the frequency-based system identification method", J. Sound Vib., 304(3-5), 660-676. https://doi.org/10.1016/j.jsv.2007.03.012
- Wang, H., Li, A.Q. and Li, J. (2010), "Progressive finite element model calibration of a long-span suspension bridge based on ambient vibration and static measurements", Eng. Struct., 32(9), 2546-2556. https://doi.org/10.1016/j.engstruct.2010.04.028
- Brownjohn, J.M.W., Xia, P.Q., Hao, H. and Xia, Y. (2001), "Civil structure condition assessment by FE model updating: methodology and case studies", Finite Elem. Anal. Des., 37(10), 761-775. https://doi.org/10.1016/S0168-874X(00)00071-8
- Schlune, H., Plos, M. and Gylltoft, K. (2009), "Improved bridge evaluation through finite element model updating using static and dynamic measurements", Eng. Struct., 31(7), 1477-1485. https://doi.org/10.1016/j.engstruct.2009.02.011
- Liao, W.Y., Ni, Y.Q. and Zheng, G. (2012), "Tension force and structural parameter identification of bridge cables", Adv. Struct. Eng., 15(6), 983-995. https://doi.org/10.1260/1369-4332.15.6.983
- Timoshenko, S.P. and Young, D.H. (1965), Theory of Structures, McGraw-Hill Book Company, New York, USA.
- Steinman, D.B. (1953), A Practical Treatise on Suspension Bridges, Wiley, New York, USA.
- Irvine, H.M. and Caughey, T.K. (1974), "The linear theory of free vibration of a suspended cable", Proceedings of the Royal Society of London, Serious A, London, UK, December.
Cited by
- Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of Long-Span Suspension Bridges vol.17, pp.6, 2017, https://doi.org/10.3390/s17061414
- Stochastic response of suspension bridges for various spatial variability models vol.22, pp.5, 2016, https://doi.org/10.12989/scs.2016.22.5.1001
- Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.139
- A new cable force identification method considering cable flexural rigidity vol.68, pp.2, 2018, https://doi.org/10.12989/sem.2018.68.2.227
- A dynamic finite element method for the estimation of cable tension vol.68, pp.4, 2015, https://doi.org/10.12989/sem.2018.68.4.399
- Autonomous main-cable vibration monitoring using wireless smart sensors for large-scale three-pylon suspension bridges: A case study vol.39, pp.3, 2020, https://doi.org/10.1177/1461348418813760
- Tension prediction for straight cables based on effective vibration length with a two-frequency approach vol.222, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2020.111121
- Parameter Identification of Main Cables of Cable Suspension Structures Based on Vibration Monitoring of Cable: Methodology and Experimental Verification vol.147, pp.4, 2021, https://doi.org/10.1061/(asce)st.1943-541x.0002965