DOI QR코드

DOI QR Code

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N. (Jamilus Research Center, Faculty of Civil and Environmental Engineering, University Tun Hussein Onn Malaysia) ;
  • Sonoda, Y. (Structural Analysis Laboratory, Department of Civil Engineering, Kyushu University) ;
  • Kueh, A.B.H. (Construction Research Centre, Universiti Teknologi Malaysia) ;
  • Jaini, Z.M. (Construction Research Centre, Universiti Teknologi Malaysia)
  • 투고 : 2014.06.04
  • 심사 : 2015.11.05
  • 발행 : 2015.12.25

초록

The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

키워드

참고문헌

  1. Beppu, M., Miwa, K., Itoh, M., Katayama, M. and Ohno, T. (2008), "Damage evaluation of concrete plates by high-velocity impact", Int. J. Impact Eng., 35(12), 1419-1425. https://doi.org/10.1016/j.ijimpeng.2008.07.021
  2. Charles, E.A. (1987), "An overview of the theory of hydrocodes", Int. J. Impact Eng., 5(1-4), 33-59. https://doi.org/10.1016/0734-743X(87)90029-7
  3. Chen, Y. and May, I.M. (2009), "Reinforced concrete members under drop-weight impacts", Proceeding of the Institution of Civil Engineers, 162(1), 45-56.
  4. Colin, J.H., Ranson, H.J., David, J.G. and Naury, K.B. (1995), "Modelling of microparticle hypervelocity oblique impacts on thick targets", Int. J. Impact Eng., 17(1-3), 375-386. https://doi.org/10.1016/0734-743X(95)99863-M
  5. Faham. T. (2008), Numerical modelling of reinforced concrete slabs subjected to impact loading, Master Thesis, University of Wollongong, Australia.
  6. Fujikake, K., Li, B. and Soeun, S. (2009), "Impact response of reinforced concrete beam and its analytical evaluation", J. Struct. Eng., ASCE., 135(8), 938-950. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000039
  7. Fukazawa, J. and Sonoda, Y. (2011), "An accuracy of impact failure response of reinforced concrete beam using ASPH method", J. Struct. Eng., Japan Soc. Civil Eng., 57A, 1205-1212. (in Japanese)
  8. Gang, L., Xibing, L. and Kejin, W. (2012), "A numerical study on the damage of projectile impact on concrete targets", Comput Concrete, 9(1), 21-33. https://doi.org/10.12989/cac.2012.9.1.021
  9. Gray, J.P., Monaghan, J.J. and Swift, R.P. (2001), "SPH elastic dynamics", Comp. Meth. App. Mech. Eng., 190(49-50), 6641-6662. https://doi.org/10.1016/S0045-7825(01)00254-7
  10. Gulkan, P. and Korucu, H. (2011), "High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs. Part II: numerical simulation and validation", Struct. Eng. Mech., 40(5), 617-636. https://doi.org/10.12989/sem.2011.40.5.617
  11. Johnson, G.R. (2011), "Numerical algorithms and material models for high-velocity impact computations", Int. J. Impact Eng., 38(6), 456-472. https://doi.org/10.1016/j.ijimpeng.2010.10.017
  12. Kantar, E., Erdem, R.T. and Anil, O. (2011), "Nonlinear finite element analysis of impact behavior of concrete beam", Math. Comp. Apps., 16(1), 183-193.
  13. Kishi, N., Ohno, T., Mikami, H. and Ando, T. (2003), "Effects of boundary conditions on impact behaviors of reinforced concrete beams subjected to falling-weight impact loads", Proc. Japan Soc. Civil Eng., 731(I-63), 299-316. (in Japanese)
  14. Lavoie, M.A., Gakwaya, A. and Ensan, M.N. (2015), "Application of SPH method for simulation of aerospace structure under impact loading", 10th International LS-DYNA User Conference, 35-42.
  15. Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific Publishing Co. Pte. Ltd.
  16. Liu, M.B., Liu, G.R. and Lam, K.Y. (2006), "Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength", J. Shock Wav., 15(1), 21-29. https://doi.org/10.1007/s00193-005-0002-1
  17. Luccioni, B. and Araoz, G. (2011), "Erosion criteria for frictional materials under blast load", Mecanica Computacional, XXX(21), 1809-1831.
  18. Ma, S., Zhang, X. and Qiu, X.M. (2009), "Comparison study of MPM and SPH in modeling hypervelocity impacts problems", Int. J. Impact Eng., 36(2), 272-282. https://doi.org/10.1016/j.ijimpeng.2008.07.001
  19. Mokhatar, S.N. (2013), "Quantitative impact response analysis of reinforced concrete beam using the SPH method", Doctoral Thesis, Kyushu University, Japan.
  20. Mokhatar, S.N., Abdullah, R. and Kueh, A.B.H. (2013), "Computational impact responses of reinforced concrete slabs", Comput. Concrete, 12(1), 37-51. https://doi.org/10.12989/cac.2013.12.1.037
  21. Mokhatar, S.N., Sonoda, Y. and Jaini, Z.M. (2013), "Nonlinear simulation of beam elements subjected to high mass low velocity impact loading using the smoothed particle hydrodynamics (SPH) method", Int. J. Integrat. Eng., 5(2), 37-42.
  22. Monaghan, J.J. and Lattanzio, J.C. (1985), "A refined particle method for astrophysical problems", Astron. Astroph., 149, 135-143.
  23. Nandlall, D. and Wong, G. (1999), A numerical analysis of the effect of erosion strain on ballistic performance prediction, DREV-TM-1999-05, Unclassified.
  24. Park, H. and Kim, J.Y. (2005), "Plasticity model using multiple failure criteria for concrete in compression", Int. J. Solid. Struct., 42(8), 2302-2322.
  25. Poinard, C., Malecot, Y. and Daudeville, L. (2010), "Damage of concrete in very high stress state: experimental investigation", Mater. Struct., 43(1-2), 15-29. https://doi.org/10.1617/s11527-008-9467-6
  26. Rabczuk, T. and Eibl, J. (2006), "Modelling dynamic failure of concrete with meshfree methods", Int. J. Impact Eng., 32(11), 1878-1897. https://doi.org/10.1016/j.ijimpeng.2005.02.008
  27. Saatci, S. and Vecchio, F.J. (2009), "Nonlinear finite element modeling of reinforced concrete structures under impact loads", ACI Struct. J., 106(5), 717-725.
  28. Sangi, A.J., Khan, R.A. and May, I.M. (2010), "Behaviour of RC beams under multiple impact loads", The First International Conference of Protective Structures, Manchester, London, October.
  29. Sonoda, Y., Mokhatar, S.N. and Tokumaru, S. (2012), "Elastic plastic impact response of beam element subjected to low velocity impact load using SPH method", J. Appl. Mech., JSCE A2, 68, 373-381.
  30. Swaddiwudhipong, S., Islam, M.J. and Liu, Z.S. (2010), "High velocity penetration/perforation using coupled smoothed particle hydrodynamics-finite element method", Int. J. Protect. Struct., 1(4), 489-506. https://doi.org/10.1260/2041-4196.1.4.489
  31. Tokumaru, S., Sonoda, Y., Fukazawa, J. and Mokhatar, S.N. (2011), "A fundamental study on the impact failure mechanism of reinforced mortar beam using SPH method", Proc. Japan Concrete Inst., 33, 775-780. (in Japanese)
  32. Unosson, M. (2009), "Numerical simulations of the response of reinforced concrete beams subjected to heavy drop tests", Fourth Int. Symposium on Impact Eng., 613-618.
  33. Youcai, W., Choi, H.J. and Crawford, J.E. (2013), "Concrete fragmentation modeling using coupled finite element-meshfree formulations", Interact. Multis. Mech., 6(2), 173-195. https://doi.org/10.12989/imm.2013.6.2.173
  34. Zhou, X.Q., Kuznetsov, V.A., Hao, H. and Waschl, J. (2008), "Numerical prediction of concrete slab response to blast loading", Int. J. Impact Eng., 35(10), 1186-1200. https://doi.org/10.1016/j.ijimpeng.2008.01.004

피인용 문헌

  1. A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion 2017, https://doi.org/10.1007/s12205-017-0610-1
  2. Polypropylene fiber reinforced concrete plates under fluid impact. Part II: modeling and simulation vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.225
  3. An impulse-based model for impact between two concrete blocks vol.107, 2017, https://doi.org/10.1016/j.ijimpeng.2017.04.019
  4. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads vol.995, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/995/1/012029
  5. Discrete mechanical models of concrete fracture vol.257, pp.None, 2015, https://doi.org/10.1016/j.engfracmech.2021.108030