References
- Beppu, M., Miwa, K., Itoh, M., Katayama, M. and Ohno, T. (2008), "Damage evaluation of concrete plates by high-velocity impact", Int. J. Impact Eng., 35(12), 1419-1425. https://doi.org/10.1016/j.ijimpeng.2008.07.021
- Charles, E.A. (1987), "An overview of the theory of hydrocodes", Int. J. Impact Eng., 5(1-4), 33-59. https://doi.org/10.1016/0734-743X(87)90029-7
- Chen, Y. and May, I.M. (2009), "Reinforced concrete members under drop-weight impacts", Proceeding of the Institution of Civil Engineers, 162(1), 45-56.
- Colin, J.H., Ranson, H.J., David, J.G. and Naury, K.B. (1995), "Modelling of microparticle hypervelocity oblique impacts on thick targets", Int. J. Impact Eng., 17(1-3), 375-386. https://doi.org/10.1016/0734-743X(95)99863-M
- Faham. T. (2008), Numerical modelling of reinforced concrete slabs subjected to impact loading, Master Thesis, University of Wollongong, Australia.
- Fujikake, K., Li, B. and Soeun, S. (2009), "Impact response of reinforced concrete beam and its analytical evaluation", J. Struct. Eng., ASCE., 135(8), 938-950. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000039
- Fukazawa, J. and Sonoda, Y. (2011), "An accuracy of impact failure response of reinforced concrete beam using ASPH method", J. Struct. Eng., Japan Soc. Civil Eng., 57A, 1205-1212. (in Japanese)
- Gang, L., Xibing, L. and Kejin, W. (2012), "A numerical study on the damage of projectile impact on concrete targets", Comput Concrete, 9(1), 21-33. https://doi.org/10.12989/cac.2012.9.1.021
- Gray, J.P., Monaghan, J.J. and Swift, R.P. (2001), "SPH elastic dynamics", Comp. Meth. App. Mech. Eng., 190(49-50), 6641-6662. https://doi.org/10.1016/S0045-7825(01)00254-7
- Gulkan, P. and Korucu, H. (2011), "High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs. Part II: numerical simulation and validation", Struct. Eng. Mech., 40(5), 617-636. https://doi.org/10.12989/sem.2011.40.5.617
- Johnson, G.R. (2011), "Numerical algorithms and material models for high-velocity impact computations", Int. J. Impact Eng., 38(6), 456-472. https://doi.org/10.1016/j.ijimpeng.2010.10.017
- Kantar, E., Erdem, R.T. and Anil, O. (2011), "Nonlinear finite element analysis of impact behavior of concrete beam", Math. Comp. Apps., 16(1), 183-193.
- Kishi, N., Ohno, T., Mikami, H. and Ando, T. (2003), "Effects of boundary conditions on impact behaviors of reinforced concrete beams subjected to falling-weight impact loads", Proc. Japan Soc. Civil Eng., 731(I-63), 299-316. (in Japanese)
- Lavoie, M.A., Gakwaya, A. and Ensan, M.N. (2015), "Application of SPH method for simulation of aerospace structure under impact loading", 10th International LS-DYNA User Conference, 35-42.
- Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific Publishing Co. Pte. Ltd.
- Liu, M.B., Liu, G.R. and Lam, K.Y. (2006), "Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength", J. Shock Wav., 15(1), 21-29. https://doi.org/10.1007/s00193-005-0002-1
- Luccioni, B. and Araoz, G. (2011), "Erosion criteria for frictional materials under blast load", Mecanica Computacional, XXX(21), 1809-1831.
- Ma, S., Zhang, X. and Qiu, X.M. (2009), "Comparison study of MPM and SPH in modeling hypervelocity impacts problems", Int. J. Impact Eng., 36(2), 272-282. https://doi.org/10.1016/j.ijimpeng.2008.07.001
- Mokhatar, S.N. (2013), "Quantitative impact response analysis of reinforced concrete beam using the SPH method", Doctoral Thesis, Kyushu University, Japan.
- Mokhatar, S.N., Abdullah, R. and Kueh, A.B.H. (2013), "Computational impact responses of reinforced concrete slabs", Comput. Concrete, 12(1), 37-51. https://doi.org/10.12989/cac.2013.12.1.037
- Mokhatar, S.N., Sonoda, Y. and Jaini, Z.M. (2013), "Nonlinear simulation of beam elements subjected to high mass low velocity impact loading using the smoothed particle hydrodynamics (SPH) method", Int. J. Integrat. Eng., 5(2), 37-42.
- Monaghan, J.J. and Lattanzio, J.C. (1985), "A refined particle method for astrophysical problems", Astron. Astroph., 149, 135-143.
- Nandlall, D. and Wong, G. (1999), A numerical analysis of the effect of erosion strain on ballistic performance prediction, DREV-TM-1999-05, Unclassified.
- Park, H. and Kim, J.Y. (2005), "Plasticity model using multiple failure criteria for concrete in compression", Int. J. Solid. Struct., 42(8), 2302-2322.
- Poinard, C., Malecot, Y. and Daudeville, L. (2010), "Damage of concrete in very high stress state: experimental investigation", Mater. Struct., 43(1-2), 15-29. https://doi.org/10.1617/s11527-008-9467-6
- Rabczuk, T. and Eibl, J. (2006), "Modelling dynamic failure of concrete with meshfree methods", Int. J. Impact Eng., 32(11), 1878-1897. https://doi.org/10.1016/j.ijimpeng.2005.02.008
- Saatci, S. and Vecchio, F.J. (2009), "Nonlinear finite element modeling of reinforced concrete structures under impact loads", ACI Struct. J., 106(5), 717-725.
- Sangi, A.J., Khan, R.A. and May, I.M. (2010), "Behaviour of RC beams under multiple impact loads", The First International Conference of Protective Structures, Manchester, London, October.
- Sonoda, Y., Mokhatar, S.N. and Tokumaru, S. (2012), "Elastic plastic impact response of beam element subjected to low velocity impact load using SPH method", J. Appl. Mech., JSCE A2, 68, 373-381.
- Swaddiwudhipong, S., Islam, M.J. and Liu, Z.S. (2010), "High velocity penetration/perforation using coupled smoothed particle hydrodynamics-finite element method", Int. J. Protect. Struct., 1(4), 489-506. https://doi.org/10.1260/2041-4196.1.4.489
- Tokumaru, S., Sonoda, Y., Fukazawa, J. and Mokhatar, S.N. (2011), "A fundamental study on the impact failure mechanism of reinforced mortar beam using SPH method", Proc. Japan Concrete Inst., 33, 775-780. (in Japanese)
- Unosson, M. (2009), "Numerical simulations of the response of reinforced concrete beams subjected to heavy drop tests", Fourth Int. Symposium on Impact Eng., 613-618.
- Youcai, W., Choi, H.J. and Crawford, J.E. (2013), "Concrete fragmentation modeling using coupled finite element-meshfree formulations", Interact. Multis. Mech., 6(2), 173-195. https://doi.org/10.12989/imm.2013.6.2.173
- Zhou, X.Q., Kuznetsov, V.A., Hao, H. and Waschl, J. (2008), "Numerical prediction of concrete slab response to blast loading", Int. J. Impact Eng., 35(10), 1186-1200. https://doi.org/10.1016/j.ijimpeng.2008.01.004
Cited by
- A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion 2017, https://doi.org/10.1007/s12205-017-0610-1
- Polypropylene fiber reinforced concrete plates under fluid impact. Part II: modeling and simulation vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.225
- An impulse-based model for impact between two concrete blocks vol.107, 2017, https://doi.org/10.1016/j.ijimpeng.2017.04.019
- The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads vol.995, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/995/1/012029
- Discrete mechanical models of concrete fracture vol.257, pp.None, 2015, https://doi.org/10.1016/j.engfracmech.2021.108030