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THE DERIVATIVE OF A DUAL QUATERNIONIC

FUNCTION WITH VALUES IN DUAL QUATERNIONS

Ji Eun Kim and Kwang Ho Shon∗

Abstract. This paper gives the expression of dual quaternions and
provides differential operators in dual quaternions. The paper also
represents the derivative of dual quaternion-valued functions by us-
ing a corresponding Cauchy-Riemann system in dual quaternions.

1. Introduction

Clifford [1] introduced dual numbers that similar to the structure of
complex numbers. Dual numbers are consisted of two components and
they are defined as follows:

z = x+ εy,

where ε is the dual operator with ε2 = 0 (ε 6= 0), x and y are real
numbers. The dual operator ε is used in the same way which is similar
to the complex operator i in complex analysis. Dual numbers can be
extended to vectors and real numbers, such as their applicability with
quaternions to provide rotations and transforms.

Hamilton [2] introduced quaternions and extended complex number
theory to formulas in a four dimensional space. A quaternion is defined
as follows:

p = x0 + x1i+ x2j + x3k,

where xr (r = 0, 1, 2, 3) are real numbers, while i, j and k are the
imaginary components such that

i2 = j2 = k2 = −1
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and

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j.

Clifford [1] combined quaternions and obtained the number system,
called the dual-quaternion which is based on the dual number the-
ory. While an unit quaternion can represent a rotation, the unit dual-
quaternion has the representation of translations and rotations. Each
dual-quaternion consists of eight elements and moreover, it has two
quaternions such that

P = p+ εq,

where p and q are quaternions called the real part and the dual part,
respectively.

Many papers studied the properties of dual quaternions and their
advantages in applications to various fields. Messelmi [16, 17] general-
ized the notions and properties of dual functions and developed general
theories of multidual numbers and multidual functions. Kajiwara et
al. [3, 4] applied the theory on a closed densely defined operator and
a priori estimate for the adjoint operator in a Hilbert space and br-
convex domains, by using an inhomogeneous Cauchy-Riemann system
in quaternion analysis. Kim et al. [8, 9] obtained some results for
the regularity of functions in Clifford analysis and Kim et al. [10, 11]
researched corresponding Cauchy-Riemann systems and properties of
functions with values in special quaternions such as reduced quaternion
and split quaternions. Kim et al. [12, 13] investigated regular func-
tions defined by the differential operators of special quaternion number
systems. McDonald [15] gave the simple approaches of the notions of
quaternions and representations of rotation matrices. Kenwright [6, 7]
gave a guide to the practicality of using dual-quaternions to represent
the rotations and translations in the complex 3D character space. Pham
et al. [18] provided a new concept of unified controls of robot manipula-
tors involving both translation and rotation, by using Jacobian matrix
in the dual-quaternion space. Kavan [5] improved that skinning of mod-
els is used for the real-time animation of characters and similar objects.
Yang-Hsing [14] studied the traditional way of coplanarity conditions
and least square solutions using dual quaternions to solve a relative ori-
entation.

This paper gives expressions of dual quaternions and differential op-
erators in dual quaternions. The paper also represents the derivative
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of dual quaternion-valued functions by using a corresponding Cauchy-
Riemann system in dual quaternions.

2. Preliminaries

We consider the following form:

Dq = {Z = p1 + εp2 | pr ∈ H, ε2 = 0, r = 1, 2},
which is isomorphic with H2 and R8, where ε is the dual unit that
commutes with i, j and k and

H = {p = z1+ z2j | z1 = x0+x1i, z2 = x2+x3i, xr ∈ R (r = 0, 1, 2, 3)}
is the set of quaternions. Here imaginary basis elements i, j and k satisfy
the following conditions:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

For two quaternions p = z1 + z2j and q = w1 +w2j, the rule of addition
is:

p+ q = (z1 + w1) + (z2 + w2)j

and multiplication is:

pq = (z1w1 − z2w2) + (z1w2 + z2w1)j.

From the above rules, we give the norm for a quaternion as follows:

|p|2 := pp∗ = z1z1 + z2z2

and the inverse of p as follows:

p−1 =
p∗

|p|2 (p 6= 0).

For Z = p1 + εp2 and W = q1 + εq2, we have the following rules of
addition on Dq:

Z +W = (p1 + q1) + ε(p2 + q2)

and multiplication on Dq:

ZW = p1q1 + ε(p1q2 + p2q1).

We give a complex conjugate element of Dq as follows:

Z∗ = p∗1 + εp∗2
and then, the norm of Z, denoted by |Z|, is described by

|Z|2 = ZZ∗ = Z∗Z = p1p
∗
1 + 2ελ,
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where λ is a real part of z1w1 + z2w2. Since the elements of the set
{εp | p ∈ H} do not have inverse, the inverse of a dual quaternion is
given by

Z−1 =
Z†

|p1|2 (p1 6= 0),

where

Z† = p∗1 − εp−1
1 p2p

∗
1,

called the left dual conjugate of Z with ZZ† = Z†Z = p1p
∗
1.

3. Hyperholomorphic function in dual quaternions

Let Ω be an open set in H2. A function is given by

F : Ω → Dq; F (Z) = f1(p1, p2) + εf2(p1, p2),

where

f1 = g1(z1, z2, w1, w2) + g2(z1, z2, w1, w2)j

and

f2 = h1(z1, z2, w1, w2) + h2(z1, z2, w1, w2)j

are quaternion-valued functions, gr and hr (r = 1, 2) are complex-valued
functions.

Definition 3.1. A function F is said to be left-hyperholomorphic in
Dq if the limit

(3.1)
dF (Z)

dZ
:= lim

ζ→0
ζ−1(F (Z + ζ)− F (Z))

exists, where ζ = η1 + εη2 → 0 means η1 → 0 and η2 → 0, that is, each
component approaches to zero.

Clearly, the properties and progresses of left-hyperholomorphic func-
tions are equivalent to those of right-hyperholomorphic functions.

For the convenience of representations of this paper, we consider left-
hyperholomorphic functions, which are called simply hyperholomorphic
functions. So now then, we write the inverse form as follows:

dF (Z)

dZ
:= lim

ζ→0

F (Z + ζ)− F (Z)

ζ
.
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Theorem 3.1. A function F is hyperholomorphic in Dq if and only
if the following conditions are held:

(3.2)





lim
η1→0,
η2→0

(F (Z + ζ)− F (Z))

η1
exists and

lim
η1→0,
η2→0

f1(p1 + η1, p2 + η2)− f1(p1, p2)

η2
is zero.

Proof. From the definition of hyperholomorphic function in Dq, the
function F has to satisfy that the following limit exists.

lim
ζ→0

F (Z + ζ)− F (Z)

ζ
= lim

η1→0,
η2→0

(F (Z + ζ)− F (Z))(η∗1 − εη†2)
η1η∗1

(3.3)

= lim
η1→0,
η2→0

F (Z + ζ)− F (Z)

η1

− lim
η1→0,
η2→0

ε
f1(p1 + η1, p2 + η2)− f1(p1, p2)

η2

(η2
η1

)2
.

Since the existence of the limit has to be independent of
(
η2
η1

)2
, the

following limit has to be zero, that is,

lim
η1→0,
η2→0

(f1(p1 + η1, p2 + η2)− f1(p1, p2))

η2
= 0.

Hence, the hyperholomorphic function F in Dq satisfies the conditions
(3.2).
Conversely, if the conditions (3.2) are held, then by the process of the
equation (3.3), we obtain that the limit

lim
ζ→0

F (Z + ζ)− F (Z)

ζ

exists.

As an example, for a function F (Z) = f1(p1, 0)+ εf2(p1, p2), if the limit

lim
η1→0,
η2→0

(F (Z + ζ)− F (Z))

η1
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exists, then F is hyperholomorphic in Dq.

Theorem 3.2. If a function F is hyperholomorphic in Dq, then the
following equations are held:

(3.4)
∂F

∂p∗1
= 0 and

∂f1
∂yr

= 0 (r = 0, 1, 2, 3).

Proof. Since F is hyperholomorphic in Dq, the limit

lim
η1→0,
η2→0

(F (Z + ζ)− F (Z))

η1

exists and

lim
η1→0,
η2→0

(f1(p1 + η1, p2 + η2)− f1(p1, p2))

η2
= 0.

By rearranging terms of the above equations, we have the following
equations:

∂F

∂x0
= −i

∂F

∂x1
= −j

∂F

∂x2
= −k

∂F

∂x3
,

∂f1
∂y0

= −i
∂f1
∂y1

= −j
∂f1
∂y2

= −k
∂f1
∂y3

= 0.

Therefore, we obtain the equations (3.4).

In detail, the Equation (3.4) is equivalent to the following system

(3.5)





∂g1
∂z1

=
∂g2
∂z2

,
∂g2
∂z1

= −∂g1
∂z2

,

∂h1
∂z1

=
∂h2
∂z2

,
∂h2
∂z1

= −∂h1
∂z2

,

∂f1
∂yr

= 0 (r = 0, 1, 2, 3)

called the corresponding Cauchy-Riemann system to Dq.

We give the differential operators in Dq.

D :=
∂

∂p1
− ε

∂

∂p2
, D∗ =

∂

∂p∗1
+ ε

∂

∂p2
,

∂

∂p1
:=

∂

∂z1
− j

∂

∂z2
,

∂

∂p2
:=

∂

∂w1
− j

∂

∂w2
,
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∂

∂p∗1
=

∂

∂z1
+ j

∂

∂z2
,

∂

∂p∗2
=

∂

∂w1
+ j

∂

∂w2
,

where ∂
∂zr

and ∂
∂wr

(r = 1, 2) are usual complex differential operators.

Definition 3.2. Let Ω be a bounded open set of Dq and for Z ∈
H2, a function F is said to be hyperholomorphic in Dq if the following
conditions are satisfied:
(i) each component f1 and f2 of F (Z) is continuously differentiable and
(ii) D∗F = 0 on Dq.

Specially, the second condition is equivalent to the system (3.5).

Example 3.1. For Z ∈ Dq, since a function

F (Z) = Z = (z1 + z2j) + ε(w1 + w2j)

satisfies the system (3.5), that is, the function F has the form

F (Z) = f1(p1, 0) + εf2(p1, p2)

and

∂F

∂p∗1
=

∂g1
∂z1

− ∂g2
∂z2

+
(∂g2
∂z1

+
∂g1
∂z2

)
j

+ε
{∂h1
∂z1

− ∂h2
∂z2

+
(∂h2
∂z1

+
∂h1
∂z2

)
j
}
= 0,

the function F is hyperholomorphic function in Dq. By using the above
calculations, F (Z) = Zn is also a hyperholomorphic function in Dq.

Example 3.2. Since a function

F (Z) = Z∗ = (z1 − z2j) + ε(w1 − w2j)

does not satisfies the system (3.5), the function F (Z) is not hyperholo-
morphic in Dq. Also, since the system (3.5) is not satisfied for the
functions

F (Z) = Z† = (z1 − z2j) + ε
(w1 + w2j)(z1 − z2j)

2

z1z1 + z2z2
and

F (Z) = Z−1 = 1− ε
(w1 + w2j)(z1 − z2j)

z1z1 + z2z2
,

the functions Z† and Z−1 are not hyperholomorphic in Dq.
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Theorem 3.3. Let Ω be a bounded open set of H2 and for Z ∈ Dq,
a function F be hyperholomorphic in Dq. Then the function F satisfies
the following equation:

DF (Z) =
∂F

∂z1
+

∂F ∗

∂z1
.

Proof. Since the function F (Z) is hyperholomorphic in Dq, the func-

tion F satisfies the conditions (3.2). Hence, we have ∂f1
∂yr

= 0 (r =

0, 1, 2, 3) and

DF (Z) =
∂F

∂p1
=

∂f1
∂z1

+ ε
∂f2
∂z1

− j
∂f1
∂z2

− jε
∂f2
∂z2

.

By replacing the terms of the system (3.5) to the above equation, we
have

DF (Z) =
∂F

∂z1
− ∂g2

∂z1
j +

∂g1
∂z1

− ε
∂h2
∂z1

j + ε
∂h1
∂z1

=
∂F

∂z1
+

∂F ∗

∂z1
.

Therefore, we obtain the result.
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