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STRONG VERSIONS OF κ-FRÉCHET AND κ-NET

SPACES

Myung Hyun Cho†, Junhui Kim∗ and Mi Ae Moon

Abstract. We introduce strongly κ-Fréchet and strongly κ-sequen-
tial spaces which are stronger than κ-Fréchet and κ-net spaces re-
spectively. For convenience, we use the terminology “κ-sequential”
instead of “κ-net space”, introduced by R.E. Hodel in [5]. And we
study some properties and topological operations on such spaces.
We also define strictly κ-Fréchet and strictly κ-sequential spaces
which are more stronger than strongly κ-Fréchet and strongly κ-
sequential spaces respectively.

1. Introduction

The notion of κ-nets (κ an infinite cardinal) was introduced by R.E.
Hodel in [5] and is based on the notion of nets. A κ-net in a space X
is a function ξ : κ<ω → X, where κ<ω = {F : F is a finite subset of κ}
and is directed by the set inclusion ⊆. The κ-net ξ is usually denoted by
〈xF : F ∈ κ<ω〉, or just 〈xF 〉, where xF= ξ(F ) for all F ∈ κ<ω. However,
the first idea of κ-net appeared in [6] under the name a phalanx as defined
by Tukey. By definition, a phalanx is a function f : A<ω → X, thus, a
κ-net is a phalanx with A = κ. Hodel in [5] used κ-nets in the study of
convergence and cluster points and then used κ-nets to extend Fréchet
and sequential spaces to higher cardinality to obtain the κ-Fréchet and
κ-net spaces. This has already done by Meyer in [7] with nets whose
directed set have cardinality at most κ. However Hodel in [5] showed
that the two approaches give the same classes of spaces.
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A κ-net on a space certainly has the intuitive appeal of nets to ap-
proach to a general theory of convergence in topology and modern anal-
ysis. The main purpose of this paper is to introduce some concepts
with respect to κ-net convergence, and discuss some properties related
to strong versions of κ-Fréchet and κ-net spaces. And we also study
some properties and topological operations on such spaces. More pre-
cisely, we will define strongly κ-Fréchet (resp., strictly κ-Fréchet) and
strongly κ-sequential (resp., strictly κ-sequential) spaces. We consider
the relationship between them.

All spaces in this paper are assumed to be Hausdorff. Our topological
terminologies and notions are as in [4].

2. Definitions and basic properties

In what follows, Card denotes a set of cardinals and let κ, λ, τ, ω ∈
Card, and |X| be the cardinality of any set X. Let 〈X, T 〉 be a space
and x ∈ X. The character of x inX, denoted by χ(x, 〈X, T 〉) or χ(x,X),
is defined as χ(x,X) = min{|B(x)| : B(x) is a local base at x}. The
character ofX, denoted by χ(X), is defined as χ(X) = sup{χ(x,X) : x ∈
X}. In particular, a space X is first countable if and only if χ(X) ≤ ω.

We write t(x, X) = min{τ ∈ Card : if A ⊆ X and x ∈ A, then
there exists B ⊆ A such that |B| ≤ τ and x ∈ B}. This is called the
tightness of X at x. The tightness of X is, denoted by t(X), is defined as
t(X) = sup {t(x,X) : x ∈ X}. In particular, a space X has a countable
tightness if and only if t(X) ≤ ω.

A space X is Fréchet if for every subset A of X and for every point
p ∈ A there is a sequence in A which converges to p. A space X is
sequential if for every non-closed subset A of X there is a sequence in A
which converges to some p ∈ A \A.

A space X is said to be strongly Fréchet ([8]) if for every decreasing
family {An : n ∈ ω} of subsets of X and for every p ∈ ∩{An : n ∈ ω},
there exists a point xn ∈ An for each n ∈ ω such that the sequence
{xn : n ∈ ω} converges to p.

Let X be a space and let p be a point of X. Then we say that a κ-net
〈xF 〉 converges to p, written by xF → p, if for any open neighborhood
V of p in X, there exists F ∈ κ<ω such that

xG ∈ V for all G ∈ κ<ω with F ⊆ G.
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A space X is κ-Fréchet ([5]) if for every p ∈ A, there exists a κ-net
〈xF 〉 in A which converges to p.

A space X is a κ-net space ([5]) if every κ-net-closed subset of X is
closed in X (A subset A of X is said to be κ-net-closed provided that if
〈xF 〉 is a κ-net in A and xF → p, then p ∈ A). For convenience, we use
the terminology “κ-sequential” instead of “κ-net space”.

Proposition 2.1 ([5]).

(1) If X is λ-Fréchet (resp., a λ-net space) and λ ≤ κ, then X is
κ-Fréchet (resp., a κ-net space);

(2) For all κ, χ(X) ≤ κ ⇒ X is κ-Fréchet ⇒ X is a κ-net space ⇒
t(X) ≤ κ, and the each converses fail;

(3) X is Fréchet ⇔ X is ω-Fréchet;
(4) X is a sequential space ⇔ X is an ω-net space.

A space X is said to be radial (resp., pseudoradial) if for every non-
closed subset A of X and every (resp., some) point p ∈ A \ A there is
a transfinite sequence S ⊆ A which converges to p. Some generalized
properties of strongly Fréchet spaces were studied in [2].

A space X is called κ-radial ([3]) if for every non-closed subset A of
X and for every point p ∈ A \ A, there exists a transfinite sequence
{xα ∈ A : α < κ} which converges to p.

3. Main results

A family {AF : F ∈ κ<ω} of subsets of a set X is called a directed
decreasing family if AG ⊆ AF whenever F ⊆ G for any F,G ∈ κ<ω.

Definition 3.1. A space X is called strongly κ-Fréchet if for every
directed decreasing family {AF : F ∈ κ<ω} of non-closed subsets of X
and for every p ∈ ∩{AF : F ∈ κ<ω} \ ∪{AF : F ∈ κ<ω}, there exists a
κ-net 〈xF : F ∈ κ<ω〉 which converges to p.

Definition 3.2. A space X is called strongly κ-sequential if for every
directed decreasing family {AF : F ∈ κ<ω} of non-closed subsets of X,
there exist a point p ∈ ∩{AF : F ∈ κ<ω} \ ∪{AF : F ∈ κ<ω} and a
point xF ∈ AF for each F ∈ κ<ω such that the κ-net 〈xF : F ∈ κ<ω〉
converges to p.

The following are true by definitions:
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Theorem 3.3.

(1) Every strongly κ-Fréchet space is κ-Fréchet;
(2) Every strongly κ-sequential space is κ-sequential;
(3) Every strongly κ-Fréchet space is strongly κ-sequential.

Under what conditions are the converses true in the above theorem?
We will consider some conditions at the end of this section.

We now consider operations on strongly κ-Fréchet and strongly κ-
sequential spaces, i.e., subspaces and mapping theorems of strongly κ-
Fréchet and strongly κ-sequential spaces.

Theorem 3.4.

(1) Every subspace of a strongly κ-Fréchet space is strongly κ-Fréchet;
(2) Every closed subspace of a strongly κ-sequential space is strongly

κ-sequential;
(3) Every open subspace of a strongly κ-sequential space is strongly

κ-sequential.

Proof. (1) Assume that Y is a subspace of a strongly κ-Fréchet space
X. Let {AF : F ∈ κ<ω} be a directed decreasing family of non-closed

subsets of Y and let p ∈ ∩{AF
Y
: F ∈ κ<ω} \ ∪{AF : F ∈ κ<ω}. Then

p ∈ AF
X ∩ Y for each F ∈ κ<ω. Since X is strongly κ-Fréchet, there

exists a point xF ∈ AF for each F ∈ κ<ω such that the κ-net 〈xF 〉
converges to p in X. Let V be an open neighborhood of p in Y . Take an
open neighborhood U of p in X such that V = U ∩Y . Then there exists
F ∈ κ<ω such that xG ∈ U for all G ∈ κ<ω with F ⊆ G. It follows from
xG ∈ Y that xG ∈ V . Therefore Y is strongly κ-Fréchet.

(2) Assume that Y is a closed subspace of a strongly κ-sequential
space X. Let {AF : F ∈ κ<ω} be a directed decreasing family of non-
closed subsets of Y . Then each AF is a non-closed subset of X because
Y is closed in X. Since X is strongly κ-sequential, there exist a point

p ∈ ∩{AF
X

: F ∈ κ<ω}\∪{AF : F ∈ κ<ω} and a point xF ∈ AF for each

F ∈ κ<ω such that the κ-net 〈xF 〉 converges to p. Since AF
Y

= AF
X

for each F ∈ κ<ω, Y is strongly κ-sequential.
(3) Let Y be an open subspace of a strongly κ-sequential space X.

Suppose that Y is not strongly κ-sequential. Let {AF : F ∈ κ<ω} be
a directed decreasing family of non-closed subsets of Y . Since each AF

is a non-closed subset of X and since X is strongly κ-sequential, there

exist a point p ∈ ∩{AF
X

: F ∈ κ<ω} \ ∪{AF : F ∈ κ<ω} and a point
xF ∈ AF for each F ∈ κ<ω such that the κ-net 〈xF 〉 converges to p in X.
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Notice that 〈xF 〉 is a κ-net in Y . By our assumption, p 6∈ AF
Y
for some

F ∈ κ<ω. Since Y \AF
Y
is open in Y (and hence in X), it is impossible

that p ∈ Y \AF
Y

(for, if p ∈ Y \AF
Y
, then there exists F0 ∈ κ<ω such

that xG ∈ Y \ AF
Y

for all G ∈ κ<ω with F0 ⊆ G. This is a contraction
to xG ∈ AG ⊆ AF for all G ∈ κ<ω with F0 ∪ F ⊆ G.).

Hence p ∈ X \ Y . But p ∈ AF
X ∩ (X \ Y ) = AF ∩ (X \ Y )

X
= ∅

for each F ∈ κ<ω. This is a contradiction. Therefore Y is strongly
κ-sequential.

Theorem 3.5.

(1) Every closed continuous image of a strongly κ-Fréchet space is
strongly κ-Fréchet;

(2) Every closed continuous image of a strongly κ-sequential space is
κ-sequential.

Proof. (1) Assume that X is a strongly κ-Fréchet space and f : X →
Y is a closed continuous onto map. Let {AF : F ∈ κ<ω} be a directed
decreasing family of non-closed subsets of Y and let p ∈ ∩{AF : F ∈
κ<ω} \ ∪{AF : F ∈ κ<ω}. Denote BF = f−1(AF ) for each F ∈ κ<ω.

Notice that f(BF ) = f(BF ) = AF for each F ∈ κ<ω (because f is a
closed continuous onto map). Hence BF = f−1(AF ) for each F ∈ κ<ω.
So we obtain that

f−1(p) ⊂ f−1(∩{AF : F ∈ κ<ω}) = ∩{BF : F ∈ κ<ω}
and

f−1(p) ∩ (∪{BF : F ∈ κ<ω}) = ∅.
Pick a point x ∈ f−1(p). Since X is strongly κ-Fréchet, there exists

a point xF ∈ BF for each F ∈ κ<ω such that the κ-net 〈xF 〉 converges
to x in X. Let yF = f(xF ) for each F ∈ κ<ω. Then yF ∈ AF for each
F ∈ κ<ω and the κ-net 〈yF 〉 converges to p in Y . Therefore Y is strongly
κ-Fréchet.

It follows from the same argument with (1) that (2) can be proved.

A continuous map f : X → Y is called pseudo-open if for each y ∈ Y
and every neighborhood U of f−1(y) we have y ∈ f(U)◦ where A◦ is the
interior of A in Y .

The following lemma is a characterization of a pseudo-open map.



554 Myung Hyun Cho, Junhui Kim and Mi Ae Moon

Lemma 3.6 ([1]). Let f : X → Y be a continuous onto map. Then
the following conditions are equivalent:

(1) For each Y ′ ⊂ Y the restriction f ′ of f to X ′ = f−1(Y ′), the
inverse image of Y ′, is a quotient map of X ′ onto Y ′;

(2) For each y ∈ Y and every open set U in X containing f−1(y),
y ∈ f(U)◦;

(3) Whenever B ⊂ Y and y ∈ Y satisfies y ∈ B, we have f−1(y) ∩
f−1(B) 6= ∅.

It is well known that every continuous closed (or open) map is pseudo-
open.

Theorem 3.7.

(1) Any pseudo-open injective image of a strongly κ-Fréchet space is
strongly κ-Fréchet;

(2) Any pseudo-open injective image of a strongly κ-sequential space
is κ-sequential.

Proof. (1) Assume that X is a strongly κ-Fréchet space and f : X →
Y is a pseudo-open bijection. Let {AF : F ∈ κ<ω} be a directed de-
creasing family of non-closed subsets of Y and let p ∈ ∩{AF : F ∈
κ<ω} \ ∪{AF : F ∈ κ<ω}. Denote BF = f−1(AF ) for each F ∈ κ<ω.
Then, by Lemma 3.6, f−1(p) ∩ BF 6= ∅. Since f is injective, f−1(p) is
a singleton (denote f−1(p) = {x}). Hence x ∈ BF for each F ∈ κ<ω.
Namely, x ∈ ∩{BF : Fκ<ω} \ ∪{BF : F ∈ κ<ω} where {BF : F ∈ κ<ω}
is a directed decreasing family of non-closed subsets of X. Since X is
strongly κ-Fréchet, there exists a point xF ∈ BF such that the κ-net
〈xF 〉 converges to x in X. Let yF = f(xF ) for each F ∈ κ<ω. Then
yF ∈ AF for each F ∈ κ<ω and the κ-net 〈yF 〉 converges to p in Y .
Therefore Y is strongly κ-Fréchet.

(2) The proof follows the same argument with (1).

A family {AF : F ∈ κ<ω} of subsets of a set X is called a strictly
directed decreasing family if AF ⊆ AG for all F,G ∈ κ<ω with |G| ≤ |F |.

Definition 3.8. A space X is called strictly κ-Fréchet if for every
strictly directed decreasing family {AF : F ∈ κ<ω} of subsets of X and
for every p ∈ ∩{AF : F ∈ κ<ω} \ ∪{AF : F ∈ κ<ω}, there exists a point
xF ∈ AF for each F ∈ κ<ω such that the κ-net 〈xF 〉 converges to p.
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Definition 3.9. A space X is called strictly κ-sequential if for every
strictly directed decreasing family {AF : F ∈ κ<ω} of non-closed subsets
of X, there exist a point p ∈ ∩{AF : F ∈ κ<ω} \ ∪{AF : F ∈ κ<ω} and
a point xF ∈ AF for each F ∈ κ<ω such that the κ-net 〈xF 〉 converges
to p.

The following are true by definitions:

Theorem 3.10.

(1) Every strictly κ-Fréchet space is strongly κ-Fréchet;
(2) Every strictly κ-sequential space is strongly κ-sequential;
(3) Every strictly κ-Fréchet space is strictly κ-sequential.

In the rest of this paper, we compare some properties in Proposition
2.1 with the properties on strong versions of κ-Fréchet and κ-net spaces.
As (1) in Proposition 2.1 we have the following theorem.

Theorem 3.11. If X is strictly λ-Fréchet and λ ≤ κ, then X is
strictly κ-Fréchet.

Proof. Suppose that X is strictly λ-Fréchet and λ ≤ κ. Let {AF :
F ∈ κ<ω} be a strictly directed decreasing family of non-closed subsets
of X and let p ∈ ∩{AF : F ∈ κ<ω} \ ∪{AF : F ∈ κ<ω}.

Let {BF : F ∈ λ<ω} be a subfamily of {AF : F ∈ κ<ω} such that
BF = AF for each F ∈ λ<ω (it is possible because λ ≤ κ). Then
{BF : F ∈ λ<ω} is a strictly directed decreasing family of non-closed
subsets of X and p ∈ ∩{BF : F ∈ λ<ω} \ ∪{BF : F ∈ λ<ω}. Since X is
strictly λ-Fréchet, there exists a point xF ∈ BF for each F ∈ λ<ω such
that the λ-net 〈xF 〉 converges to p.

Now, we shall construct a κ-net 〈yF : F ∈ κ<ω〉 converging to p. Let
N = {xF : F ∈ λ<ω} and let In = {F ∈ λ<ω : xF ∈ N, |F | = n}
for each n ∈ N. We firstly choose a number n0 = min{n : In 6= ∅}
and fix a point xF0 ∈ {xF : F ∈ In0}. Then we define yF = xF0

for each F ∈ κ<ω such that |F | ≤ |F0|. We choose again a number
n1 = min{n : In 6= ∅, n > n0} and fix a point xF1 ∈ {xF : F ∈ In1}.
Then we define yF = xF1 for each F ∈ κ<ω such that |F0| < |F | ≤ |F1|.

Inductively, we can choose two sets {nk : k ∈ N}, {xFk
: k ∈ N} and

a κ-net 〈yF : F ∈ κ<ω〉 satisfying
• nk = min{n : In 6= ∅, n > nk−1};
• xFk

∈ {xF : F ∈ Ink
};

• yF = xFk
for each F ∈ κ<ω with |Fk−1| < |F | ≤ |Fk|.
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Then for each F ∈ κ<ω, there exists a number k ∈ N such that
yF = xFk

and |F | ≤ |Fk|. Since xFk
∈ BFk

and |F | ≤ |Fk|, we have
yF ∈ AF . It is obvious, by construction, that the κ-net 〈yF 〉 converges
to p. Therefore X is strictly κ-Fréchet.

We have known from Theorem 3.3 that every strongly κ-Fréchet space
is strongly κ-sequential. However, we do not know yet the other impli-
cations as in Proposition 2.1. We pose two questions as below.

Question 3.12. Are the following true?

(1) For all κ, χ(X) ≤ κ ⇒ X is strongly κ-Fréchet(or even strictly
κ-Fréchet);

(2) X is strongly κ-sequential ⇒ t(X) ≤ κ;
(3) X is strongly Fréchet ⇔ X is strongly ω-Fréchet;
(4) X is sequential ⇔ X is strongly ω-sequential.

Question 3.13. Is every κ-radial space strongly κ-Fréchet (or even
strictly κ-Fréchet)?

It seems that there is no implication between radial and strongly
κ-sequential.
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