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THE GREATEST EXPANDED NUMBER EXPANDED

BY SUMMING OF POWERS OF ITS DIGITS

Kyung Ho Jeong and Ihn Sue Kim∗

Abstract. In this paper, we proved some properties of the greatest
expanded numbers, and give the method to determine the greatest
expanded numbers and find the integer x for which Sq,p(x)−x is the
largest. Additionally, we provide an algorithm to find the greatest
expanded number.

1. Introduction

For two positive integers q, p(≥ 2), let Sq,p : Z+ → Z+ be the map
defined by, to each positive integer x =

∑n
i=0 aip

i, assigning the sum of
the qth powers of its p-base digits. In other words, for x =

∑n
i=0 aip

i, 0 ≤
ai ≤ p− 1,

Sq,p(x) = Sq,p

( n∑
i=0

aip
i

)
=

n∑
i=0

aqi .

On the sum of powers of digits of an integer, Singh identified fixed
points and periodic orbits in the dynamical system defined by summing
the rth powers of the digits of a positive integer repeatedly [2].

Grundman and Teeple presented a method for determining the fixed
points and cycles for Sq,p(x) and apply it to S5,p(x) with 2 ≤ p ≤ 10 [1].

Grundman and Teeple also proved in [1] that

(1.1) if x ≥ pq+1, then Sq,p(x) < x.

Thus there can exist the integers with x ≤ Sq,p(x) for x < pq+1. In
fact, such integers exist and are much smaller than pq+1.

In this paper, we proved some properties of such numbers and give
the method to determine the greatest such numbers and to find the
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integer x for which Sq,p(x) − x is the largest. Additionally, we provide
an algorithm to find the greatest expanded number.

2. Analysis of the difference Sq,p(x)− x

Definition 2.1. 1. A positive integer x =
∑n

i=0 aip
i, 0 ≤ ai ≤

p − 1, is called an expanded number in qth powers in p-base if
x ≤ Sq,p(x), where Sq,p(x) is the sum of the qth powers of its
p-base digits.

2. The greatest expanded number in qth powers in p-base is the largest
number among the all of expanded numbers in qth powers in p-
base, and denoted by M(Sq,p).

3. A positive integer x =
∑n

i=0 aip
i, 0 ≤ ai ≤ p − 1, is called a

circulated number in qth powers in p-base if x = Sq,p(x).

Example 2.1. If p = 10, q = 2, the expanded numbers in 2th pow-
ers(squares) in 10-base are 1, 2, 3, . . . , 99 of all 51 integers, and 1 is the
only circulated number in 2th powers(squares) in 10-base.

Example 2.2. For all natural numbers p(≥ 2), q, 1 is a circulated
number in qth powers in p-base.

From (1.1), we know that if x ≤ Sq,p(x) then x < pq+1[1]. But, if
x = pq+1 − 1, then

x = ((p− 1) + 1)q+1 − 1

> (p− 1)q+1 + (q + 1)(p+ 1)q − 1

≥ (q + 1)(p+ 1)q = Sq,p(x).

Thus, in any case, pq+1−1 can’t be the expanded number. Therefore,
we need to analyze the characteristics of the expanded number.

To do this we observe about Sq,p(x)− x. Since

Sq,p(x)− x =

q∑
i=0

aqi −
q∑
i=0

aip
i =

q∑
i=0

(aqi − aip
i),

for nonnegative integer i, let hi(t) = tq−pit(0 ≤ t ≤ p−1). This function
hi gives an important clue to find the greatest expanded number.

In the next lemma we can obtain the required tool to analyze Sq,p(x)− x.

Lemma 2.1. When p, q are the integers with p ≥ 3, q ≥ 2, p ≥ q,
about the integer i(≤ q), let hi(t) = tq − pit(0 ≤ t ≤ p− 1). Then

1. if κ = [(q − 1) logp(p− 1)] + 1, the maximum of hi(t) is
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(a) when i < κ, hi(p− 1).
(b) when i ≥ κ, 0.

2. i > j ⇒ hi(p− 1) < hj(p− 1).

3. if λ = logp
(p− 1)q − 1

p− 2
,

(a) when i < λ, hi(p− 1) > hi(1).
(b) when i ≥ λ, hi(p− 1) ≤ hi(1).

4. for i, κ ≤ i < n, if the real root less than p − 1 of hi(t) = (p −
1)q − (p− 1)pi is αi,

(a) ifm0 = q−1

√
pi

q
, mn+1 =

hi(p− 1) ·mn

hi(mn)
=

(p− 1)q − (p− 1)pi

pi −mq−1
n

,

for n,

αi < mn+1 < mn and lim
n→∞

mn = αi.

(b) if f(t) = hi(t)− hi(p− 1), r0 = 0, r − n+ 1 = rn −
f(rn)

f ′(rn)
,

[rn] = [mn], then [αi] = [mn].

Proof. 1. h′i(t) = 0 ⇒ t = q−1

√
pi

q
.

When i ≤ q − 1,

q−1

√
pi

q
≤ q−1

√
pq−1

q
= p q−1

√
1

q
< p,

so hi(t) has a minimum less than one in case of 0 ≤ t < p, and
doesn’t have a maximum. Therefore the global maximum of hi(t)
is max{hi(0) = 0, hi(p − 1)}. (In case of t > 0, hi(t) has one
extremum which is a minimum.)

On the other hand,

hi(p− 1) < hi(0)⇔ (p− 1)q − pi(p− 1)) < 0

⇔ pi > (p− 1)q−1

⇔ i > (q − 1) logp(p− 1).

Therefore, if κ = [(q− 1) logp(p− 1)] + 1, the maximum of hi(t) is
when i < κ, hi(p− 1), when i ≥ κ, 0.
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i) i < κ, hi(p − 1) ≥ 0 = hi(0)

Case1 : i < κ, hi(p− 1)

ii) i ≥ κ, hi(p − 1) < 0 = hi(0)

Case2 : i ≥ κ, hi(p− 1)

(The graph of y = hi(t) by the size of i)

2. If i = j + a(a is a natural number),

hi(p− 1) = (p− 1)q − pj+a(p− 1))

= (p− 1)q − pj(p− 1)− (pj+a − pj)(p− 1)

= hj(p− 1)− (pj+a − pj)(p− 1)

< hj(p− 1).

3.

hi(p− 1) ≤ hi(1)⇔ (p− 1)q − pi(p− 1)) ≤ 1− pi

⇔ pi(p− 2) ≥ (p− 1)q − 1

⇔ i ≥ logp
(p− 1)q − 1

p− 2
= λ.

4. If m = q−1

√
pi

q
, hi(t) = tq − pit(0 ≤ t ≤ p − 1) is a minimum at

t = m, curved down. And if i ≥ κ, hi(p− 1) < 0.
In this case, the line connecting the origin and the point (m,hi(m))

meet y = hi(p− 1) and x coordinate of intersection is m1,

m1 : m = (−hi(p− 1)) : (−hi(m)).
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Therefore,

m1 =
−hi(p− 1) ·m
−hi(m)

=
(p− 1)pi − (p− 1)q

pi −mq−1

=
q(p− 1)

(q − 1)

(
1− (p− 1)q−1

pi

)
.

In the same way, for a
natural number n, if

mn+1 =
(p− 1)pi − (p− 1)q

mq−1
n − pi

,

αi < mn+1 < mn and

limn→∞mn = αi. Finding approximate value of αi

On the other hand, if
f(t) = hi(t)− hi(p− 1) = tq − pit+ (p− 1)pi − (p− 1)q,

f ′(t) = qtq−1 − pi.
Let r0 = 0, by applying the method of Newton,

r1 = 0− −(p− 1)q + (p− 1)pi

−pi
=
−(p− 1)q + (p− 1)pi

pi

= p− 1− (p− 1)q

pi
.

rn+1 = rn −
f(rn)

f ′(rn)

= rn −
rqn − rnpi + (p− 1)i − (p− 1)q

qrq−1n − pi
.

At this moment, αi > rn+1 > rn, and limn→∞ rn = αi. Therefore,
by repeating the above two processes, if [rn] = [mn], [αi] = [mn].

3. Properties of the greatest expanded number

Now using Lemma 2.1, let us find the useful way to get the greatest
expanded number. The next theorem is useful in case of p ≥ q.
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Lemma 3.1. If x =
∑n

i=0 aip
i(a 6= 0, p > 2, q ≥ 2 are natural

numbers, 0 ≤ ai ≤ p− 1), then

x ≤ Sq,p(x)⇒ x < (q − 1)pq.

Proof. 1. In case of q > p, since (q−1)pq ≥ p ·pq = pq+1, by (1.1),
x < pq+1 ≤ (q − 1)pq.

2. Now let us look into the case of q ≤ p. By (1.1), it is enough to
consider n ≤ q, let x = aqp

q+aq−1p
q−1+· · ·+a1p+a0 =

∑q
i=1 aip

i.
Then

Sq,p(x)− x =

q∑
i=0

aqi −
q∑
i=0

aip
i =

q∑
i=0

(aqi − aip
i),

Sq,p(x)− x− (aqq − aqpq) =

q−1∑
i=0

(aqi − aip
i).

If hi(t) = tq − pit(0 ≤ t ≤ p− 1), κ, in Lemma 2.1, is
κ = [(q − 1) logp(p− 1)] + q < (q − 1) + 1 = q.

Thus, by Lemma 2.1, the maximum of Sq,p(x)−x−(aqq−aqpi) =∑q−1
i=0 (aqi − aipi) is

κ−1∑
i=0

hi(p− 1) +

q−1∑
i=0

hi(0) =

κ−1∑
i=0

((p− 1)q − (p− 1)pi)

= κ(p− 1)q − pκ + 1.

Therefore, when aq = q − 1, the maximum of Sq,p(x)− x is
(q − 1)q − (q − 1)pq + κ(p− 1)q − pκ + 1
< (q − 1)q − (q − 1)pq + (q − 1)(p− 1)q − pκ + 1
< (q−1)q− (q−1){(p−1)q +q(p−1)q−1}+(q−1)(p−1)q−pκ+1
= (q − 1)q − q(q − 1)(p− 1)q−1 − pκ + 1 < 0
(∵2 ≤ q ≤ p, so (q − 1)q−1 < q(p− 1)q−1).
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Also, if hq(t) = tq − pqt has a
minimum at t = m,

m = q−1

√
pq

q
≥ q−1

√
pq

p
= p,

so hq(t) = tq−pqt is decreased at
0 ≤ t ≤ p − 1. Thus, when aq ≥
q − 1, Sq,p(x)− x < 0.
Therefore,
Sq,p(x) ≥ x ⇒ x < (q − 1)pq. hq(t) = tq − pqt.

Example 3.1. If S2,10(x) ≥ x, x < (2− 1) · 102 = 100.
If S3,10(x) ≥ x, x < (3− 1) · 103 = 2000.

Actually, M(S2,10) = 99, M(S3,10) = 1999. Thus, Lemma 3.1 gives
an convenient means to find the greatest expanded number in the case
of p ≥ q. Now let us investigate when (q − 1)pq − 1 becomes M(Sq,p).

Corollary 3.2. For integers p, q such as p ≥ 3, q ≥ 2, p ≥ q,
when h(p, q) = (q − 2)q − (q − 1)pq + q(p− 1)q + 1,

h(p, q) ≥ 0⇔ (q − 1)pq − 1 = M(Sq,p).

Proof. In case of p ≥ q, if q ≥ 2, since

(p− 1)pq − 1 = (q − 2)pq +

q−1∑
i=0

(p− 1)pi,

Sq,p(x)− x = (q − 2)q − (q − 2)pq +

q−1∑
i=0

((p− 1)q − (p− 1)pi)

= (q − 2)q − (q − 2)pq + q(p− 1)q − (pq − 1)

= (q − 2)q − (q − 1)pq + q(p− 1)q + 1

= h(p, q).

Thus, a necessary and sufficient condition for x = (q− 1)pq − 1 to be
the greatest expanded number is h(p, q) ≥ 0.

Example 3.2. Since

h(5, 2) = (q − 2)q − (q − 1)pq + q(p− 1)q + 1

= (2− 2)2 − (2− 1) · 52 + 2 · (5− 1)2 + 1

= 8 > 0,
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the sum of the squares of digits in 5 base is

(q − 1)pq − 1 = (2− 1) · 52 − 1 = 24 = 44(5).

When q is a constant, h(p, q) is a monic polynomial of p. For given
q, if p is big enough, (q − 1)pq − 1 is the greatest expanded number.

Here, let us investigate, in case of q is small, according as how big p
is, (q − 1)pq − 1 comes to be the greatest expanded number.

Corollary 3.3. 1. If p ≥ 3, M(S2,p) is p2 − 1.
2. If p ≥ 8, M(S3,p) is 2p3 − 1.
3. If p ≥ 15, M(S4,p) is 3p4 − 1.

Proof. 1. h(p, 2) = −p2 +2(p−1)2 +1 = p2−4p+3 = (p−2)2−1.
If p ≥ 3, h(p, 2) ≥ 0. By Corollary 3.2, p2 − 1 is M(S2,p).

2.

h(p, 3) = (q − 2)q − (q − 1)pq + q(p− 1)q + 1

= 1− 2p3 + 3(p− 1)3 + 1

= p3 − 9p2 + 9p− 1

= (p− 1)((p− 4)2 − 15).

Thus, if p ≥ 8, then h(p, 3) > 0.

3. h(p, 4) = 22 − 3p4 + 4(p− 1)4 + 1 = p4 − 16p3 + 24p2 − 16p+ 9,

d

dp
h(p, 4) = 4p3 − 16 · 3p2 + 24 · 2p− 16 = s(p3 − 12p2 + 12p− 4).

If p ≥ 15,
d

dp
h(p, 4) > 0, and h(15, 4) = 1794 > 0.

Therefore, if p ≥ 15, h(p, 4) > 0.

When the greatest expanded number is expressed in their base, at
the end part of digits of the greatest expanded number, the same digits,
p− 1, are repeated. For example, M(S2,10) is 99, so 2 times 9, M(S3,10)
is 1999, so 3 times 9, M(S4,5) is 10444(5), so 3 times 4. This means the

greatest expanded number can be denoted like a · pb− 1(a, b are natural
numbers.).

Therefore how many times (p − 1) are repeated there like this? In
other words, when ‘the greatest expanded number(M(Sq,p)) is denoted

like a ·pb−1(a, b are natural numbers.), let us think about the maximum
of b (in other words, when a is not multiple of p, the value of b).
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Theorem 3.4. When the greatest expanded number (M(Sq,p)) is
denoted in base p, the number of (p − 1) at the end part satisfies the
next inequality.

κ ≤ (the number of p− 1) ≤ q,
where κ = [(q − 1) logp(p− 1)] + 1.

Proof. In the proof of Lemma 2.1, if i < κ, for two natural numbers
x = x1p

i+1 + x0, y = x1p
i+1 + pi+1 − 1, where x0 = aip

i + ai−1p
i−1 +

· · ·+ a1p+ a0 < pi+1 − 1, 0 ≤ am < p, m = 0, 1, . . . , i− 1, we have

Sq,p(x)− x ≥ 0⇒ Sq,p(y)− y ≥ 0.

∵0 ≤ Sq,p(x)− x = Sq,p(x1)− x1pi+1 +

i∑
n=0

(aqn − anpn)

≤ Sq,p(x1)− x1pi+1 +
i∑

n=0

((p− 1)q − (p− 1)pn)

= Sq,p(y)− y.

Here, if x < y, x can’t be M(Sp,q). In other words, M(Sp,q) should be
the form like y. At this time, the maximum of i is κ−1. Therefore, when
M(Sp,q) is denoted in p base, the digits from the position of 1(= p0) to
the position of pκ−1 are all p− 1.

Therefore, if κ = [(q − 1) logp(p− 1)] + 1,

κ ≤ (the number of p− 1) ≤ q.

In case p is not too much less compared q, κ = q − 1.(Table 1.)
Now, let us look into about the digits whose position is more than pκ

of the greatest expanded number.

Theorem 3.5. For the integers p ≥ 3, q ≥ 2, when
κ = [(q − 1) logp(p− 1)] + 1, x =

∑n
i=0 aip

i(an 6= 0, 0 ≤ ai ≤ p− 1) and
an integer j, κ ≤ j ≤ n,

1. if x is the expanded number, y =
∑n

i=j aip
i+pκ−1 is the expanded

number.
2. if x is M(Sq,p), aj is the maximum of b to

∑n
i=j+1 aip

i+bpj+pκ−1

be the expanded number (0 ≤ b ≤ p − 1, if j = n,
∑n

i=j+1 aip
i =∑n

i=n+1 aip
i = 0).
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Proof. 1. By Lemma 2.1.(1), if hi(t) = tq − pit, 0 ≤ t ≤ p − 1.
When i ≥ κ, the maximum of hi(t) is 0. Therefore, if i ≥ κ,

hi(ai) = aqi − aip
i ≤ 0.

Thus, Sq,p(y)− y ≥ Sq,p(x)− x > 0.
2. If the maximum of b to make

∑n
i=j+1 aip

i+bpj+pκ−1 the expanded

number is m, when z =
∑n

i=j+1 aip
i+mpj+pκ−1, x is the greatest

expanded number, so x ≥ z. Therefore aj ≥ m.
By (1),

∑n
i=j aip

i + pκ − 1 =
∑n

i=j+1 aip
i + ajp

j + pκ − 1 is the
expanded number, aj ≤ m, therefore, aj = m.

Theorem 3.5 tells that each digits of the greatest expanded number
could be determined one by one.

Now, for the given numbers p, q, and the sum of q-powered in p-
base, let us find what number becomes the biggest. In other words,
let us find what x is the biggest in Sq,p(x) − x. This also gives us the
information concerning the greatest expanded number. We can find the
answer about this in the next theorem.

Theorem 3.6. When κ = [(q−1) logp(p−1)]+1, λ = logp
(p− 1)q − 1

p− 2
,

p ≥ 3,

1. a natural number that Sq,p(x)− x is the maximum is pκ − 1.
2. when it is denoted in base p, among the natural number x of which

(n+1) is the position number, a natural number that is Sq,p(x)−x
is the maximum
(a) if n < κ, pn − 1,
(b) if κ ≤ n < λ, (p− 1)pn + pκ − 1,
(c) if n = λ(in case of λ is an integer), (p − 1)pn + pκ − 1 and

pn + pκ − 1,
(d) if n > λ, pn + pκ − 1.

Proof. 1. By Lemma 2.1, when hi(t) = tq − pit (0 ≤ t ≤ p− 1),
if i ≥ κ, about t as 1 ≤ t ≤ q − 1, hi(t) < hi(0) = 0,
if i < κ, the maximum of hi(t) is hi(p − 1) ≥ 0. Therefore, when
x =

∑n
i=0 aip

i(ai is nonnegative integer that is less than p), the
cases Sq,p(x)−x =

∑n
i=0(a

q
i −aipi) becomes the maximum are ‘for

i as i ≥ κ, ai = 0, and for i as i < κ, ai = p − 1’. Therefore, the
natural number that Sq,p(x)− x is the maximum is pκ − 1.

2. In the proof of Lemma 2.1, when hi(t) = tq − pit (0 ≤ t ≤ p− 1),
if n < κ, hi(p− 1) > hi(0) > hi(1),
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if κ ≤ n ≤ λ, hi(0) > hi(p − 1) > hi(1) (but, in case of n = λ,
hi(0) > hi(p− 1) = hi(1)),
if n ≥ λ, hi(0) > hi(1) ≥ hi(p− 1).
From these we get the result.

When x =
∑n

i=0 aip
i (ai is nonnegative integer that is less than

p), if x is the natural number of (n + 1) position, it should be
an ≥ 1. Therefore, the natural number that Sq,p(x) − x is the
maximum is like the result above.

Lemma 3.1 is very meaningful in case that p is much bigger than
given q. Therefore, we need to study the meaningful content to apply
this case. About this, let us look into the next theorem.

Lemma 3.7. About the integers p, q as p ≥ 3, q ≥ 2,
when κ = [(q− 1) logp(p− 1)] + 1, α = logp(κ(p− 1)q − pκ + 2), η = [α],

if x =
∑n

i=0 aip
i (an 6= 0, 0 ≤ ai ≤ p− 1) is M(Sq,p), n = η.

Proof. (i)α ≥ λ.
If pκ ≤ p(p− 1)q−1 in κ = [(q − 1) logp(p− 1)] + 1,

λ = logp
(p− 1)q − 1

p− 2
, α = logp(κ(p− 10q − pκ + 2),

pα − pλ

p− 2
= (p− 2)(κ(p− 1)q − pκ + 2)− ((p− 1)q − 1)

≥ (p− 2)(κ(p− 1)q − p(p− 1)q−1 + 2)− ((p− 1)q − 1)

= ((p− 2)((κ− 1)(p− 1)− 1)− (p− 1))(p− 1)q−1 + 2p− 3

= ((p− 2)(p− 1)(κ− 1)− 1)(p− 1)q−1 + 2p− 3,

if q ≥ 3, in κ = [2 logp(p− 1)] + 1 when p ≥ 3, κ ≥ 2.

Therefore, when p ≥ 3, q ≥ 3,
pα − pλ

p− 2
≥ 0. Also, if q = 2, since κ = 1,

pα − pλ

p− 2
≥ −(p− 1) + 2(p− 2) + 1 = p− 2 ≥ 0. Here, when p ≥ 3, q ≥ 2,

pα − pλ

p− 2
≥ 0. In other words, α ≥ λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /.-,()*+1

(ii) If there is an integer j as λ ≤ j ≤, n = [α] = η.
By Theorem 3.5, if n ≥ λ, pn + pκ − 1 becomes the (n+1) position nat-
ural number that Sq,p(y)− y is the maximum. In other words,

0 ≤ Sq,p(x)− x ≤ Sq,p(y)− y.
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In

y = pn + (p− 1)pκ−1 + · · ·+ (p− 1)p+ (p− 1)

= pn +
κ−1∑
i=0

(p− 1)pi,

if Sq,p(y)− y = 1− pn + κ(p− 1)q − pκ + 1,
Sq,p(y)− y ≥ 0, pn ≤ κ(p− 1)q − pκ + 2.
In other words, n ≤ logp(κ(p− 1)q − pκ + 2) = α. Therefore, if there is
an integer j as λ ≤ j ≤ α, about such j, when

y = pj + (p− 1)pκ−1 + · · ·+ (p− 1)p+ (p− 1)

= pj +

κ−1∑
i=0

(p− 1)pi,

Sq,p(y)− y = κ(p− 1)q − pκ + 2− pj ≥ 0.

At this time, if x =
∑n

i=0 aip
i (an 6= 0, 0 ≤ ai ≤ p− 1) is the greatest

expanded number (M(Sq,p)), n is the maximum of such j.
Therefore, if there is an integer j as λ ≤ j ≤ α, n = [α] = η. . . . . . . . /.-,()*+2

(iii) And, if there isn’t an integer j as λ ≤ j ≤ α, when n > λ, about
x =

∑n
i=0 aip

i (an 6= 0, 0 ≤ ai ≤ p− 1), Sq,p(x)− x < 0.
Therefore, if there is not an integer j as λ ≤ j ≤ α, to become
Sq,p(x)− x ≥ 0 it should be n ≤ λ ≤ α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . /.-,()*+3
By /.-,()*+1 , /.-,()*+2 , /.-,()*+3 , n ≤ η = [α]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /.-,()*+4

(iv) α ≥ κ.

pα − pκ = (κ(p− 1)q − pκ + 2)− pκ = κ(p− 1)q − 2pκ + 2

≥ κ(p− 1)q − 2p(p− 1)q−1 + 2

= ((κ− 2)(p− 1)− 2)(p− 1)q−1 + 2.

Since p ≥ 3, if κ ≥ 3, pα − pκ > 0,
if a ≥ 4 (except p = 3, q = 4), since κ ≥ 3, pα − pκ > 0.
if p = 3, q = 4, since κ = 2, pα−pκ = 2·(3−1)4−2·32+2 = 32−18+2 > 0.
if q = 3, κ = 2,

pα − pκ = 2(p− 1)3 − 2p2 + 2 = 2(p− 1)((p− 1)2 − (p+ 1))

= 2(p− 1)(p2 − 3p) ≥ 0.

if q = 2, since κ = 1,
pα − pκ = (p− 1)2 − 2p+ 2 = p2 − 4p+ 3 = (p− 1)(p− 3) ≥ 0.
From the above, since pα − pκ ≥ 0, α ≥ κ. . . . . . . . . . . . . . . . . . . . . . . . . . /.-,()*+5
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(v) By /.-,()*+5 , since η ≥ κ, let us look into

x = pη + pκ − 1 = pη +

κ−1∑
i=0

(p− 1)pi.

Since pη = p[α] ≤ pα = κ(p− 1)q − pκ + 2− pη ≥ 0.
Here, n ≥ η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /.-,()*+6
By /.-,()*+4 and /.-,()*+6 , n = η.

The above lemma decides which digit is the maximum of x ≤ Sq,p(x).
Compared with the given q, when p is big enough, q = η, in that case it
is more meaningful to be explained by Lemma 3.1. If not, this theorem
is more meaningful.

And, in the proof of Lemma 3.7, in case α = logp(κ(p− 1)q − pκ + 2)
becomes n = α, in (ii) since Sq,p(y) − y = 0, (n + 1)digit which is not
x is the circulated number and the greatest expanded number. When
(q, p) is (3, 2), (3, 3), (6, 3), it comes to be.

In the above proof of Lemma 3.7, instead of (iv), it can be explained
more simply ‘though there is the case of η = κ − 1, when x = p − 1
through Sq,p(x) − x > 0, it should be n ≥ η’. However, ‘α ≥ κ’ is also
valuable to know, so it is proved like the above.

Here let us denote the range of η with p, κ.
Since κ−1 ≤ (p− 1)q−1 < pκ,
κ(p− 1)pκ−1 − pκ + 2 ≤ κ(p− 1)q − pκ + 2 < κ(p− 1)pκ − pκ + 2,

κpκ − κpκ−1 − pκ + 2 ≤ κ(p− 1)q − pκ + 2 < κpκ+1(κ+ 1)pκ + 2,

pκ−1(−κ− p) < κ(p− 1)q − pκ+ 2 < κpκ+1,

logp(κp− κ− p) + κ− 1 < logp κ+ κ+ 1,

[logp(κp− κ− p)] + κ− 1 ≤ η ≤ [logp κ] + κ+ 1.

In other words, the digit of the greatest expanded number is less than
or equal to [logp κ] + κ+ 2, η − κ is less than or equal to [logp κ] + 1.

Example 3.3. In case of p = 3, q = 10,
κ = [(q − 1) logp(p− 1)] + 1 = [9 log3 2] + 1 = [5.678] + 1 = 6,
η = [logq(κ(p− 1)q − pκ + 2)] = [7.83] = 7.

Thus, M(S10,3) is η+1 = 8 digit number (Actually, M(S10,3) is 38−1 =
22222222(3)).

Similarly to Corollary 3.2, let us find in what case pη+1 − 1 becomes
the greatest expanded number.
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Since Sq,p(p
η+1 − 1) = (η + 1)(p− 1)q,

Sq,p(p
η+1 − 1)− (pη+1 − 1) ≥ 0⇔ (η + 1)(p− 1)q − (pη+1 − 1) ≥ 0

⇔ pη+1 ≥ (η + 1)(p− 1)q + 1.

However, the case that the above inequality is satisfied is not common,
so it is useful only in some cases.

And, when in the above the value of κ and the greatest expanded
number are denoted in base p, the number of (p − 1) and the (η + 1)
digit number of the greatest expanded number at the end are shown like
the next.

Table 1. The value of κ according to p, q and the amount and digit of
(p− 1) at the end of the greatest equally expanded number.

And, when we clarify the above Lemma 2.1, Lemma 3.1, Lemma 3.7
the next theorem is completed.

Theorem 3.8. About the integer p, q as p ≥ 3, q ≥ 2, when
κ = [(q − 1) logp(p− 1)] + 1, α = logp(κ(p− 1)q − pκ + 2), η = [α],

if x =
∑n

i=0 aip
i(an 6= 0, 0 ≤ ai ≤ p − 1) is the greatest expanded

number, κ ≤ n = η ≤ q, and the next makes sense.

1. About the integer i as 0 ≤ i < κ, ai = p− 1.
2. About the integer i as κ ≤ i ≤ n, if the real root that is less than
p− 1 of tq − pit = (p− 1)q − (p− 1)pi is αi, ai = p− 1 or ai ≤ αi.

3. In case of n = q, an < q − 1.

Proof. 1. By Lemma 3.1, Lemma 3.7, κ ≤ n = η ≤ q.
2. In case of i ≥ κ, hi(t) = tq − pit(0 ≤ t ≤ p − 1) is the minimum

at t = [q − 1]
pi

q
. Thus, if the real root that is less than p − 1 of

tq − pit = (p − 1)q − (p − 1)pi is αi, when αi < t < p − 1, since
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hi(t) = tq − pit < hi(p− 1),
x = A · pi+1 + aip

i + B, y = A · pi+1 + (p − 1)pi + B (A is the
natural number, B is the nonnegative integer less than pi, when ai
is the integer as αi < ai < p− 1, if y is not the expanded number,

Sq,p(x)− x = Sq,p(y)− y + (aqi − p
iai)− ((p− 1)q − pi(p− 1)) < 0).

In other words, if y is not the expanded number, x is also not the
expanded number.

3. By Lemma 3.1, an < q − 1.

The above Theorem 3.8 explains if x is the greatest expanded number,

pη +

κ−1∑
i=0

(p− 1)pi ≤ x < min{(q − 1)pq, pη+1}.

4. Finding algorithm of the greatest expanded number

To find M(Sq,p), we can check the natural number less than x =
(q− 1)pq − 1, or x = pη+1− 1, but in case either p or q is big, actually it
is not easy to calculate them, therefore, we need to find the way to find
the greatest expanded number using the above characteristics.

First, by Corollary 3.2, in case of p ≥ q and h(p, q) > 0, (q− 1)pq − 1
becomes just the greatest expanded number. And, by Lemma 3.7 the
digit of the greatest equally expanded number can be calculated. Of
course, when η = q and p > q the highest digit value is less than (q−1).
Also, by Theorem 3.4, the κ digit at the end can be decided by (p− 1).
And, by using Theorem 3.5, from the value of pκ digit to pη digit, the
value of (η − κ+ q) digit only have to be decided in turn.
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Finding algorithm of the greatest expanded number

1. Calculate κ = [(q−1) logp(p−1)]+1, α = logp(κ(p−1)q−pκ+2),
η = [α].

2. By Theorem 3.8 check the natural number x as x ≤ pη+1 − 1.
In case of η = q and p ≥ q, check the natural number x as x ≤
(q − 1)pq − 1.

3. If x =
∑η

i=κ aip
i + bpj + pκ − 1, and it is decided by the order of

aη, aη−1, aη−2, . . . aκ.
(a) in case it is decided from aη to aj+1, the maximum of b to

make
∑η

i=j+1 aip
i+ bpj +pκ−1 become the expanded number

is decided by aj .
(b) We can substitute one by one by one and check from p − 1

of b, but in case of (p− 1) if it does not exist, calculate αi in
Lemma 2.1, and check from [αi].

The above way is good to apply by using computer, and when p ≥ q,
in case of calculating it directly, like Example 3.2, it is useful to check
h(p, q) first.

In case that αi is not used in the above way, since the value of pη

digit is more than 1, the case that the checking time is the maximum is
that the greatest expanded number is pη + pκ − 1, and the number of
times is η = q and when p ≥ q, the number of times is (q−2) +p(q−κ),
in the other case the number of times is (p− 1)(η− κ+ 1). Actually we
can find the greatest expanded number by much less checking.

Example 4.1. Find M(S10,20).
Here, we may not apply αi;

First, we can calculate,
κ = [(q − 1) logp(p− 1)] + 1 = [9 · log20 19] + 1 = 9.
η = [10.56] = 10. Therefore, η = q.
Thus, the greatest expanded number to solve is x = a10 ·2010 +a9 ·209 +
209−1. Also, a10 ≤ q−2 = 8. Now, when s1 = b101 −2010b1 + 9×1910−
(209−1) is denoted, substitute 8, 7, . . . to b1 in turns and check whether
‘s1 > 0’ exists or not. Then, when b1 = 5, it exists first. Therefore,
a10 = 5.

When s2 = b92−209b2+510−5×2010+9×1910−(209−1) is denoted,
substitute 19, 18, . . . to b2 in turns and check whether ‘s2 > 0’ exists or
not. Then, when b2 = 6, it exists first. Therefore, a9 = 6. Therefore
M(S10,20) = 5 · 2010 + 6 . . . 209 + 209 − 1 = 5 · 2010 + 7 · 209 − 1 =
5.7×2010−1(20). (We can find (8−5+1)+(19−6+1) = 18 the number
of times by checking.)
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When we apply αi above, when b2 = 19, ‘s2 > 0’ doesn’t exist.

If h9(t) = t10 − 209t, h9(t) is the minimum at m =
9

√
209

10
. m1 =

hi(p− 1) ·m
h(m)

=
q(p− 1)

q − 1

(
1− (p− 1)q−1

pi

)
≈ 7.806

r1 = p− 1− (p− 1)q

pi
≈ 7.025.

Since [r1] = [m1] = 7, [α9 = 7].
Instead of finding r1, by checking t = [m1] = 7, you can find [α9].

Therefore you can start checking from the case of b2 = 7. Including the
calculation of m1, r1, you can find the greatest expanded number by
checking the number of times (8− 5 + 1) + 2 + 2 = 9.

The table shows the greatest expanded numbers obtained from the
algorithm.(Each number is denoted in its base.)
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Table 2. The greatest expanded number according to p, q.
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