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THE GREATEST EXPANDED NUMBER EXPANDED
BY SUMMING OF POWERS OF ITS DIGITS

KyuNg Ho JEONG AND IHN SUuE Kim*

Abstract. In this paper, we proved some properties of the greatest
expanded numbers, and give the method to determine the greatest
expanded numbers and find the integer « for which S; ,(x)— is the
largest. Additionally, we provide an algorithm to find the greatest
expanded number.

1. Introduction

For two positive integers ¢, p(> 2), let Sy, : ZT — ZT be the map
defined by, to each positive integer x = )" ;a;p’, assigning the sum of
the gth powers of its p-base digits. In other words, for z = >_7" ; a;p’,0 <

a; < p—= 17
n n
Su0(e) = Sy L o) = St
1=0 1=0

On the sum of powers of digits of an integer, Singh identified fixed
points and periodic orbits in the dynamical system defined by summing
the rth powers of the digits of a positive integer repeatedly [2].

Grundman and Teeple presented a method for determining the fixed
points and cycles for S, ,(z) and apply it to S5 ,(z) with 2 < p <10 [1].

Grundman and Teeple also proved in [1] that

(1.1) if > p?™! then S, ,(z) < =.

Thus there can exist the integers with z < S, ,(z) for z < p?™l. In
fact, such integers exist and are much smaller than p?*!.

In this paper, we proved some properties of such numbers and give
the method to determine the greatest such numbers and to find the
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integer x for which S, ,(z) — z is the largest. Additionally, we provide
an algorithm to find the greatest expanded number.

2. Analysis of the difference S, ,(z) — «

Definition 2.1. 1. A positive integer = > "1 ja;p’, 0 < a; <
p — 1, is called an expanded number in qth powers in p-base if
x < Syp(x), where Sy () is the sum of the gth powers of its
p-base digits.

2. The greatest expanded number in qth powers in p-base is the largest
number among the all of expanded numbers in gth powers in p-
base, and denoted by M (S, ;).

3. A positive integer x = > 1 aip’, 0 < a; < p—1, is called a
circulated number in qth powers in p-base if x = Sy ().

Example 2.1. If p = 10, ¢ = 2, the expanded numbers in 2th pow-

ers(squares) in 10-base are 1,2,3,...,99 of all 51 integers, and 1 is the
only circulated number in 2th powers(squares) in 10-base.

Example 2.2. For all natural numbers p(> 2), ¢, 1 is a circulated
number in gth powers in p-base.

From (1.1), we know that if z < S, ,(z) then z < p?T1[1]. But, if
x = pitt — 1, then

p=((p-1)+ 1" -1

>p-D™" +(g+Dp+1)7-1
Z (g+1)(p+1)7 = 54p(x).
Thus, in any case, p?*! —1 can’t be the expanded number. Therefore,

we need to analyze the characteristics of the expanded number.

To do this we observe about S, ,(x) — . Since

q q . q ‘
Sep(@) —x = _al => aip' =Y (al — aip'),
i=0 i=0 i=0

for nonnegative integer i, let h;(t) = t7—p't(0 < t < p—1). This function
h; gives an important clue to find the greatest expanded number.

In the next lemma we can obtain the required tool to analyze S, ,(x)— .

Lemma 2.1. When p, ¢ are the integers with p > 3, ¢ > 2, p > ¢,
about the integer i(< q), let h;(t) =t9 —p't(0 <t <p—1). Then
L. if K = [(¢ — 1) log,(p — 1)] + 1, the maximum of h;(t) is
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(a) when i < k, hi(p —1).
(b) when i > &, 0.
2.1>j5 = hz(p—l) < hj(p—l).
, (p—1)7-1
3. lf)\ = logp pT
(a) when i < A, hi(p —1) > hi(1).
(b) when i > A, hi(p—1) < h;i(1).
4. for i, k < i < m, if the real root less than p — 1 of hi(t) = (p —
19— (p—1)p" is «,
4| hip—1)-mn _ (p—1)7—(p—1)p’

—, m 1 = — X — )
q m hi(my,) pt —mi, !

)

(a) jfmo =

for n,

a; < Mpy1 < my and lim my, = q;.
n—oo

f(rn)
f(rn)’

(b) if f(t) =hi(t) —hi(p—1),r0=0,7r—n+1=1r, —

[rn] = [my], then [oy] = [my].

[
Proof. 1. h(t)=0=t= 3 v
q

When 1 <qg—1,

; -1
q*1i§ qlpq:pq—i/T<p’
q q q

so h;(t) has a minimum less than one in case of 0 < t < p, and
doesn’t have a maximum. Therefore the global maximum of h;(t)
is max{h;(0) = 0,h;(p — 1)}. (In case of t > 0, h;(t) has one
extremum which is a minimum.)

On the other hand,

hi(p—1) < hi(0) = (p— 19 —p'(p—1)) <0

ep' > @p-1r!
&i>(q—1)log,(p—1).

Therefore, if K = [(¢ — 1) log,(p — 1)] + 1, the maximum of h;(t) is
when i < k, hi(p — 1), when ¢ > &, 0.
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i) 1 < K, hi(p — 1) >0 = hl(O) ii) i1 > K, hi(p— 1) < 0= hl(O)

? )
R hit)

Casel : i < K, hi(p—1) Case2 : i > K, hi(p—1)
(The graph of y = h;(t) by the size of 7)

2. If i = j + a(a is a natural number),

hilp—1)=(p—1)7—p™(p—1))
=p-1)"=pp-1)-@P*-p)p-1)
=hi(p—1)— (@ -p))(p-1)
< hj(p—1).

hilp—1) < h(1) & (p—1)"—p'(p—1) <1—p’
Spp—-2)>@(p-1)7-1
(p-1*-1_

s>
i > log, P

i
4. If m = 7% ]l, hi(t) = t9 — pit(0 <t < p—1) is a minimum at
q

t = m, curved down. And if i > &, hi(p — 1) <O.
In this case, the line connecting the origin and the point (m, h;(m))
meet y = h;(p — 1) and = coordinate of intersection is my,

mi:m = (=hi(p — 1)) : (—hi(m)).
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Therefore,
m —hi(p — 1) -m
1= 57—
_hi(m) h;(t)
_(p=1)p' —(p—1)*
- pz —mua-1
_q@—no_@—nrj_ S
(¢—1) pi

In the same way, for a
natural number n, if

(p—1p' = (p—1)1
mqfl _ pi
; < Mpy1 < my and

)

Mp+1 =

1m0 My, = Q. Finding approximate value of «;

On the other hand, if ‘ A
ft) =hi(t) = hi(p—1) =t =p't +(p—1)p' = (p— 1)4,
f't) = gt = p".
Let 7o = 0, by applying the method of Newton,
—(p=1)7+@-Dp _ —(p-1)'+p@-1p

L = 0— —pi = pl
p—1)¢
p
ool = Ty — f(ra)
el ) (1
=Ty — T .
qrn p
At this moment, o; > 7,41 > 75, and lim,_, o 7, = a;. Therefore,
by repeating the above two processes, if [r,] = [my], [a;] = [my)].
O

3. Properties of the greatest expanded number

Now using Lemma 2.1, let us find the useful way to get the greatest
expanded number. The next theorem is useful in case of p > q.
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Lemma 3.1. If z = > ja;p'(a # 0, p > 2, ¢ > 2 are natural
numbers, 0 < a; < p— 1), then

z < Sgp(x) =2 < (¢—1)p7.

Proof. 1. In case of ¢ > p, since (g —1)p? > p-p? = p?*! by (1.1),
x < pt < (g —1)p?.

2. Now let us look into the case of ¢ < p. By (1.1), it is enough to
consider n < q, let z = aqpq+aq_1pq*1+- ctaiptag =1, a;p'.
Then

If hi(t) =t —p't(0 <t < p—1), K, in Lemma 2.1, is
k=[g—1log,(p—1)]+qg<(¢—1)+1=gq. |

Thus, by Lemma 2.1, the maximum of S ,(z) —z—(ad—ap') =
>t (af — aip') is

k—1 q—1 k—1
Dohilp=1)+> hi(0) = ((p— 1)~ (p - 1)p')
=0 =0 1=0

=r(p—-1)7=p"+1

Therefore, when a, = ¢ — 1, the maximum of S, ,(z) — z is
(=17 (qg—1p?+r(p—1)7—p" +1
<(@g-1)"=(¢—1p?+(g—-Dp-1)7-p"+1
<(q=1)1=(g=D{(p—1)7+qlp— )"} +(¢-1)(p—1)?—p"+1
== =qlg-Dp-1)7 =p"+1<0
(2<g<pso(g—1)"" <qlp-1)7").
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Also, if hy(t) = t¢ — p?t has a
minimum at ¢t = ( £

= q{/p > q{/p =P, : q—1Pm /
0 t

s0 hg(t) = t9—pit is decreased at
0§t§p—1 Thus, when a; >
q—1, Sgp(x) —x <0.
Therefore,

Sep(®) 2z = o < (¢—1)p% hq(t) = 9 — pit.

Example 3.1. If Sy 10(z) > 2, 2 < (2 —1) - 10? = 100.
If S510(x) >z, z < (3—1) - 103 = 2000.

Actually, M (S2,10) = 99, M(S310) = 1999. Thus, Lemma 3.1 gives
an convenient means to find the greatest expanded number in the case
of p > ¢. Now let us investigate when (¢ — 1)p? — 1 becomes M (S p).

Corollary 3.2. For integers p, ¢ such asp > 3,q > 2, p > q,
when hp,q) = (¢ —2)? — (¢ = 1)p? + q(p — 1)? + 1,

h(p,q) >0 (¢ —1)p? — 1= M(Syp).
Proof. In case of p > q, if ¢ > 2, since

q—1
(p—1p' —=1=(g=2)p"+ > (p— D7,
1=0
q—1 '
Sep(@) —z=(¢—2)7— (¢ —2)p + Z((p —1)7— (p—1)p)

:(q—2)q—(q—2)pq+qu—1)q—(pq—1)
=(@=2)"=(¢—Dp?+alp-1)"+1

= h(p, q).
Thus, a necessary and sufficient condition for z = (¢ — 1)p? — 1 to be
the greatest expanded number is h(p,q) > 0. O

Example 3.2. Since
h(5,2) =(¢—2)" = (¢—1p? +q(p—-1)7+1
=2-2%-(2-1)-5°+2-(5-1)%*+1
=8>0,
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the sum of the squares of digits in 5 base is
(q—1p?—1=(2-1)-5"—1 =24 =44,

When ¢ is a constant, h(p,q) is a monic polynomial of p. For given
q, if p is big enough, (¢ — 1)p? — 1 is the greatest expanded number.

Here, let us investigate, in case of ¢ is small, according as how big p
is, (¢ — 1)p? — 1 comes to be the greatest expanded number.

Corollary 3.3. 1. Ifp >3, M(Syy) is p* — 1.
2. Ifp>8, M(Ss,) is 2p> — 1.
3. If p > 15, M(Syy) is 3p* — 1.

Proof. L. h(p,2) = —p*+2(p—1)2+1=p>—4p+3 = (p—2)2>—1.
If p > 3, h(p,2) > 0. By Corollary 3.2, p> — 1 is M(Sa,).
2.

h(p,3) =(q—2)"—(g—1p? +q(p—-1)"+1
=1-2p°+3(p—-1)*+1
=p*—9p*+9p—1
= (p—1)((p—4)* - 15).
Thus, if p > 8, then h(p,3) > 0.
3. h(p,4) =22 —3p* +4(p— 1D +1 = p* — 16p> + 24p? — 16p + 9,

Z)h(p, 4) = 4p> —16-3p> +24-2p — 16 = s(p® — 12p* + 12p — 4).

d
If p > 15, —h(p,4) > 0, and h(15,4) = 1794 > 0.
P

Therefore, if p > 15, h(p,4) > 0.
]

When the greatest expanded number is expressed in their base, at
the end part of digits of the greatest expanded number, the same digits,
p— 1, are repeated. For example, M (S219) is 99, so 2 times 9, M (S3,10)
is 1999, so 3 times 9, M (Sy5) is 10444 5), so 3 times 4. This means the
greatest expanded number can be denoted like a - p® — 1(a, b are natural
numbers.).

Therefore how many times (p — 1) are repeated there like this? In
other words, when ‘the greatest expanded number(M (S, ,)) is denoted
like a-p®—1(a, b are natural numbers.), let us think about the maximum
of b (in other words, when a is not multiple of p, the value of b).
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Theorem 3.4. When the greatest expanded number (M(S,,)) is
denoted in base p, the number of (p — 1) at the end part satisfies the
next inequality.

k < (the number of p — 1) < g,

where x = [(q — 1) log,(p — 1)] + 1.

Proof. In the proof of Lemma 2.1, if ¢ < £, for two natural numbers
x = zpt +ao, y = p™ +p — 1, where 20 = aip’ +a;i1p'! +
cedaptag<ptt—-1,0<a, <p,m=0,1,...,i— 1, we have

Sgp(x) —x>0=5,,(y) —y >0.

i
0 < Syp(@) — 2 = Syp(xy) — mp™t + Z(a% —app")
n=0

< Syplr1) —ap™ ) ((p— 1) = (p— 1)p")

n=0

= Sq,p(y) - Y.

Here, if x < y, « can’t be M (S, 4). In other words, M (S, 4) should be
the form like y. At this time, the maximum of i is k—1. Therefore, when
M(S,.4) is denoted in p base, the digits from the position of 1(= p°) to
the position of p*~! are all p — 1.

Therefore, if k = [(¢ — 1) log,(p — 1)] + 1,

k < (the number of p — 1) < gq.
O

In case p is not too much less compared ¢, kK = ¢ — 1.(Table 1.)
Now, let us look into about the digits whose position is more than p”
of the greatest expanded number.

Theorem 3.5. For the integers p > 3, ¢ > 2, when
k=1[(g—1) log,(p — D+1,z=>" ap'(a, #0,0<a; <p—1) and
an integer j, k < j < n,

1. if x is the expanded number, y = Z?:j a;p'+p"—1 is the expanded
number. ' ‘

2. ifx is M(Sq,p), a; is the maximum of b to > 31 ;| a;p’ +bp’ +p~ - 1
be the expanded number (0 < b <p—1,ifj=n, Z?:H_l a;pt =

Z?:nJrl aipi = O)
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Proof. 1. By Lemma 2.1.(1), if hy(t) = t9 —p't, 0 < t < p— 1.
When i > k, the maximum of h;(t) is 0. Therefore, if i > &,

hi(a;) = al — a;pt < 0.

Thus, Sgp(y) —y > Sy p(x) —2 > 0.

2. If the maximum of b to make Z?:jﬂ aip%'tbpj +p"—1 the expanded
number is m, when z = Z?:jﬂ a;p*+mp’ +p~—1, x is the greatest
expanded number, so x > z. Therefore a; > m.

By (1), Z?:j apt+pt—1= Z?:J.H a;p* + a;jp’ +p~ —11is the
expanded number, a; < m, therefore, a; = m.
O

Theorem 3.5 tells that each digits of the greatest expanded number
could be determined one by one.

Now, for the given numbers p, ¢, and the sum of ¢-powered in p-
base, let us find what number becomes the biggest. In other words,
let us find what z is the biggest in S, ,(x) — x. This also gives us the
information concerning the greatest expanded number. We can find the
answer about this in the next theorem.

(p—1)7-1
Theorem 3.6. When k = [(¢—1)log,(p—1)]+1, A = log, s

p —_—
p=3,

1. a natural number that S, ,(x) — x is the maximum is p* — 1.

2. when it is denoted in base p, among the natural number x of which
(n+1) is the position number, a natural number that is Sg,(x) —x
is the maximum
(a) ifn <k, p" — 1,

(b) ifk<n <A, (p—1p"+p" —1,

(¢c) if n = A(in case of A is an integer), (p — 1)p™ + p" — 1 and
P Apt -1,

(d) if n> A\, p" +p" —1.

Proof. 1. By Lemma 2.1, when h;(t) = t7 —pt (0 <t <p—1),
if i > Kk, about tas 1 <t <q—1, hi(t) < h;y(0) =0,
if i < kK, the maximum of h;(t) is hi(p — 1) > 0. Therefore, when
x =Y " ga;p'(a; is nonnegative integer that is less than p), the
cases Sy p(z)—x = 31 (al —a;p’) becomes the maximum are ‘for
tast >k, a; =0, and for ¢ as ¢ < Kk, a; = p — 1. Therefore, the
natural number that S, ,(z) — « is the maximum is p* — 1.

2. In the proof of Lemma 2.1, when h;(t) =t —pit (0 <t <p-—1),
if n <k, hi(p — 1) > hl(O) > hi(l),
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if Kk <n <A hi(0) > hi(p—1) > hi(1) (but, in case of n = A,
hi(0) > hi(p — 1) = hy(1)),
From these we get the result.

When z = Y"1 a;p’ (a; is nonnegative integer that is less than
p), if = is the natural number of (n + 1) position, it should be
ap > 1. Therefore, the natural number that Sg,(x) — « is the

maximum is like the result above.
O

Lemma 3.1 is very meaningful in case that p is much bigger than
given g. Therefore, we need to study the meaningful content to apply
this case. About this, let us look into the next theorem.

Lemma 3.7. About the integers p, q asp > 3, q > 2,
when r = [(q - 1) Ing(p— 1)] + 17 o = lng(/f(p - 1)q _p'Li + 2)7 n= [a];
ife=>7" aip" (an #0,0<a; <p—1)is M(Syp), n=n.

Proof. (i)a > A.
I p* < p(p— 1)L in & = [(q — 1)logy(p— 1)] + 1,

A = log, (p;l_)q2—1’ a = log,(k(p — 107 — p* + 2),
a oA
oy =) - 2 (- 1))
>(p—2)(k(p— 1) —plp—1)""+2) = ((p—- 17— 1)
=((p-2((k=Dp-1)-1)=@-1))p-1)""+2p-3
=((p-2)p-(x-1)-Dp-1)"" +2p -3,

if ¢ >3,in k= [2log,(p—1)] +1 when p > 3, k > 2.

p* —p
Therefore, when p > 3, ¢ > 3, ——— > 0. Also, if ¢ = 2, since K = 1,
p* —p*
5 >—(p—1)+2(p—2)+1=p—2>0. Here, when p > 3, g > 2,
2
——— >0. Inother words, > A. ............ ... ... ... ......... @
p—2

(ii) If there is an integer j as A < j <, n = [a] = 7.
By Theorem 3.5, if n > A, p" + p" — 1 becomes the (n+1) position nat-
ural number that S, ,(y) — v is the maximum. In other words,

0< Sq p(x) —x < Sq,p(y) - Y.

)



540 Kyung Ho Jeong and Ihn Sue Kim

In
y=p"+@-1p" "+ (p-p+(p—1)

Kk—1
=p"+> (p-1)p,
i=0
if Sqp(y) —y=1-p"+rp—1)7—p"+1,
Sep(y) —y >0, p" < k(p—1)7 —p~ +2.
In other words, n < log,(k(p — 1)? — p" + 2) = a. Therefore, if there is
an integer j as A < j < «, about such j, when

y=p +@-p" '+ +(p-Dp+(p-1)
r—1
=P+ (p— 1,
=0

Sq,p(y)_y:“(p_l)q_pﬁ+2—pj > 0.

At this time, if z = Y1 ja;ip’ (a, # 0, 0 < a; < p—1) is the greatest
expanded number (M (Syp)), n is the maximum of such j.
Therefore, if there is an integer jas A< j<a,n=[a]=n. ....... @

(iii) And, if there isn’t an integer j as A < j < a, when n > A, about
=" gap (a, #0,0<a; <p—1), Sgp(z) —z <O0.
Therefore, if there is not an integer j as A < j < «, to become

Sgp(@) —xz>0itshouldben < A<a. ...................o ©
By@,@,@,ngn:[a]. ........................................ @
(iv) a > K.

pr=p"=(kp—1)"—p"+2) —p" =r(p—1)7—2p" +2

> r(p—1)9—=2p(p— )7 +2
=((k=2)p-1) =2)(p—1)"" +2.
Since p > 3, if kK > 3, p* — p" >0,
if a > 4 (except p =3, ¢ =4), since k > 3, p® — p" > 0.
ifp=3,q=4,since k = 2, p*—p* = 2-(3—1)*—-2-3242 = 321842 > 0.
ifq=3, k=2,
p*=pt =2 -1 -2p" +2=2(p - D)((p—1)* - (p+ 1))
=2(p - )(p* - 3p) > 0.
if g =2, since k =1,

p*=pi=(p—1)P2-2p+2=p"—4p+3=(p—-1)(p—3) > 0.
From the above, since p® —p* >0, a > K. oo @
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(v) By (5) since 1 = K, let us look into

K—1
z=pl+p"—1=p"+) (p—1)p"
i=0
Since p = pl*l < p* = k(p — 1) = p* +2 - p" > 0.
Here, n > m oo @
By @and @y =" O

The above lemma decides which digit is the maximum of z < S ().
Compared with the given g, when p is big enough, ¢ = n, in that case it
is more meaningful to be explained by Lemma 3.1. If not, this theorem
is more meaningful.

And, in the proof of Lemma 3.7, in case a = log,(k(p — 1)9 — p" +2)
becomes n = «, in (ii) since Sgp(y) —y = 0, (n + 1)digit which is not
x is the circulated number and the greatest expanded number. When
(¢,p) is (3,2), (3,3), (6,3), it comes to be.

In the above proof of Lemma 3.7, instead of (iv), it can be explained
more simply ‘though there is the case of n = Kk — 1, when z = p — 1
through Sy p,(xz) — 2 > 0, it should be n > n’. However, ‘a > £’ is also
valuable to know, so it is proved like the above.

Here let us denote the range of n with p, .

Since "1 < (p— 1)1 < p~,

K(p = 1p" ! = p" +2 < k(p—1)7 = p® +2 < k(p— 1)p* — pF + 2,
Rp® = wp" Tt =+ 2 < k(p — 1)T = pt 42 < kp™HH (s + 1)pt + 2,
PNk —p) <k(p—1)7 = pr +2 < kp"H,
log,(kp —k —p) + k=1 <log,rk+ Kk +1,

[log,(kp — Kk —p)] + Kk —1 < n < [log, k] + K + 1.

In other words, the digit of the greatest expanded number is less than
or equal to [log, k] + K + 2, n — & is less than or equal to [log, k] + 1.

Example 3.3. In case of p =3, ¢ = 10,
k=1[(g—1)log,(p—1)] +1=[91ogz2] + 1 = [5.678] + 1 = 6,
n = [log,(k(p — 1) —p" +2)] = [7.83] = 7.
Thus, M (S103) is n+1 = 8 digit number (Actually, M (Syo3)is 3°—1 =
22222222 3)).

Similarly to Corollary 3.2, let us find in what case p7*! — 1 becomes
the greatest expanded number.
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Since Sy, (p"t —1) = (n+1)(p — 1)4,

Sep(@™ =1 ="M -1) >0 n+1)(E-1)7— (" -1)>0
P>+ (p-1)7+1

However, the case that the above inequality is satisfied is not common,
so it is useful only in some cases.

And, when in the above the value of k£ and the greatest expanded
number are denoted in base p, the number of (p — 1) and the (n + 1)
digit number of the greatest expanded number at the end are shown like
the next.

2 3 4 5 6 7 3 9 10

K ou . |Kou ."|ROoU . ."|TKoU . ."|Kou .|Kou . . "(RKou . "|KoUu .~|KOUl .
p ot 1t nt 1t nt 1t nt 1t nt gl nt;it nt 1t nt 1t tu
3 11 22122 3|23 3|34 4|45 5/46:6|/56 7|66 3|6 8 8
4 |1 22|23 3|34 4/4'5 5|46 6/56!7/66 8|78 9(8 910
5 11212]2/313[3/3 5]414/6|5/517/6:618|78/8|79/9/810110
6 |1 2,2|2,2,4(3,3 5/4,5,6|5,6;7/66;8|7 7 9|88 109 911
7 /12 2122 4134 545 6|56, 767 8|78 9|8 9109 1011
3 |1 2:212'3 4134 5]/45 6|55:766: 8|77 988109 911
9 |1 212]2/3/4(3/4 5]/4/4/6|5/517/6/718|7:8 9|8/9110/9110111
10 11 221234134 5144, 6/5 6,76 78|78 989109 911

Table 1. The value of k according to p, ¢ and the amount and digit of
(p — 1) at the end of the greatest equally expanded number.

And, when we clarify the above Lemma 2.1, Lemma 3.1, Lemma 3.7
the next theorem is completed.

Theorem 3.8. About the integer p, q as p > 3, ¢ > 2, when
k= [(g—1)log,(p — 1)] + 1, @ =log,(k(p — 1)? — p* +2), n = [a,
ifz =", aip'(an # 0, 0 < a; < p— 1) is the greatest expanded
number, k <n =n < q, and the next makes sense.
1. About the integer i as 0 <i < k, a; = p — 1.
2. About the integer i as k < i < n, if the real root that is less than
p—1loftl—pit=(p—-1)9—(p—1)p'isa;, a;=p—1ora; <a.
3. In case of n = q, a, < q— 1.

Proof. 1. By Lemma 3.1, Lemma 3.7, Kk <n =mn < q.
2. In case of i > K, h(t) =t —p't(0 <t < p—1) is the minimum

)

at t = [q — 1}2. Thus, if the real root that is less than p — 1 of
q

t4—pit = (p—1)7— (p—1)p’ is a;, when o; < t < p — 1, since
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hl(t) =t *pit < hl(p — 1),

r=A pt4ap + B, y=A-pt +(p—1)p' + B (A is the
natural number, B is the nonnegative integer less than p’, when a;
is the integer as a; < a; < p — 1, if y is not the expanded number,

Sep(z) — 2= Sp(y) —y + (af — Piai) —((p—1)7 - Pi(p —1)) <0).
In other words, if y is not the expanded number, x is also not the

expanded number.
3. By Lemma 3.1, a, < ¢ — 1.

O
The above Theorem 3.8 explains if x is the greatest expanded number,
k—1
P+ (p— 1)p’ < x < min{(q — Dp?,p" ).
i=0

4. Finding algorithm of the greatest expanded number

To find M(S,,), we can check the natural number less than x =
(g—1)p?—1, or & = p""1 — 1, but in case either p or q is big, actually it
is not easy to calculate them, therefore, we need to find the way to find
the greatest expanded number using the above characteristics.

First, by Corollary 3.2, in case of p > ¢q and h(p,q) > 0, (¢—1)p? —1
becomes just the greatest expanded number. And, by Lemma 3.7 the
digit of the greatest equally expanded number can be calculated. Of
course, when n = ¢ and p > ¢ the highest digit value is less than (¢ —1).
Also, by Theorem 3.4, the k digit at the end can be decided by (p — 1).
And, by using Theorem 3.5, from the value of p* digit to p" digit, the
value of (n — k + ¢q) digit only have to be decided in turn.
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Finding algorithm of the greatest expanded number

L. Calculate x = [(¢—1)log,(p—1)]+1, a = log, (k(p— 1) —p" +2),
n=lal.

2. By Theorem 3.8 check the natural number z as < p"t! — 1.
In case of n = ¢ and p > ¢, check the natural number z as x <

(¢q—1p?—1. _
3. Iz =37 aipp'+bp! +p" — 1, and it is decided by the order of
an, an,l, an,g, e Qg

(a) in case it is decided from a, to aj;+1, the maximum of b to
make Y7 i1 a;p' +bp’ + p" — 1 become the expanded number
is decided by a;.

(b) We can substitute one by one by one and check from p — 1
of b, but in case of (p — 1) if it does not exist, calculate «; in
Lemma 2.1, and check from [o].

The above way is good to apply by using computer, and when p > ¢,
in case of calculating it directly, like Example 3.2, it is useful to check
h(p,q) first.

In case that «; is not used in the above way, since the value of p”
digit is more than 1, the case that the checking time is the maximum is
that the greatest expanded number is p” + p® — 1, and the number of
times is n = ¢ and when p > ¢, the number of times is (¢ —2) + p(q — k),
in the other case the number of times is (p — 1)(n — k + 1). Actually we
can find the greatest expanded number by much less checking.

Example 4.1. Find M (S1020).
Here, we may not apply ay;

First, we can calculate,
k=[(¢g—1)log,(p—1)] +1=1[9 logy 19] +1=09.

n = [10.56] = 10. Therefore, n = q.

Thus, the greatest expanded number to solve is z = aqg - 200 +ag - 207 +
207 — 1. Also, ajp < ¢—2 = 8. Now, when s; = b%o —20'9; +9 x 1910 —
(207 — 1) is denoted, substitute 8, 7, ...to by in turns and check whether
‘s1 > 0’ exists or not. Then, when by = 5, it exists first. Therefore,
aip = 5.

When sg = b —20%b9 + 519 — 5 x 2019 +9 x 1919 — (20 — 1) is denoted,
substitute 19, 18, ...to by in turns and check whether ‘so > 0’ exists or
not. Then, when by = 6, it exists first. Therefore, ag = 6. Therefore
M(S1020) = 5-200 +6...20° +20° -1 =5-20104+7.20° -1 =
5.7% 20" —1(59). (We can find (8—5+1)+(19—6+1) = 18 the number
of times by checking.)
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When we apply «; above, when by = 19, ‘s > 0’ doesn’t exist.
207
If ho(t) = t19 — 20%, hg(t) is the minimum at m = y T ™=

hilp—1)-m _ q(p—1) <1 N i)q_l) ~ 7.806

h(m) a 1 p
—1
m=p-1- 7005
Since [r1] = [m1] =7, [ag = 7].

Instead of finding 71, by checking ¢ = [m;] = 7, you can find [ay].
Therefore you can start checking from the case of b = 7. Including the
calculation of mq, r1, you can find the greatest expanded number by
checking the number of times (8 =5+ 1) +2+2=09.

The table shows the greatest expanded numbers obtained from the
algorithm.(Each number is denoted in its base.)
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1—09x(7T) T-4:09%38 T-,00%4 T-509%(L0)'9 1-,00%9 T-400%5 T-,00%% T-00%¢ T-:00%2 | (g5ymsy | o9
T 0Ex(ET) T-4:06%38 T-50C %4 T-,0€x9 1-,06%9 T-40€%5 T-,0Ex¥ T-0¢ =& 1-:06x2 | (6t2et) | 08
T 0F<(ET) T-0F <L T-s0F <& T-o0F <8 T-,0F = (T0rs T-50F %5 1-,0F =¥ T-:0F %8 1-:07%2 | suesy | or
1—c0Ex(0T) T-08x4 1-506 %9 1-.06 %9 1-,08%5 | T-g06x@0¥ | T-06%F 1-:06 %8 1-08%2 | tezatezy | 08
T—08<L T- 4 0TxL0)S T-,0E %5 T-,0E %5 T-,02xE0F T-,0C ¥ T-,02x(T100% T-0€%¢ T-:00%2 | (sTo8T) | 02
T-g0TXE0G | T-59TxG T-9Tx§ | T-0Tx(Z0¥ | 1-,0Tx¥F T-o9T ¥ T-9Tx¢ T-: 0T %8 T-e0TxE | (s1aty | o1
T—,CT %5 T-g€T=G [ T-gCT=F00F | T-5CT=¥ T-,CTxF | T-pSTXGFWE | T-,CTx8 T—5CT %€ T-cCTXZ | (pTotT) | o1
TP TXFOIT | T- P TXEOT | T-,FT>(100F T-gVIx¥ -, 7% T-oF Tx(200'E T-.F71x¢ T-:FIxE0Z | T-F1x%2 | s1ey | #1
T-46TxF T-ETxF T-46T=F T-.6T ¥ T-,ETXE0E | T-ET=T0E T-,ETxE T-:6Tx20Y2 | T-:£Tx2 | ¢zt | 81
TG LXFOVE | TG IXT T-GIXT | =G IX(G0E | I-,GIXE0E | [-gGI X% T-gGIXE | T IXUW7E | -G IXE | (1D | 21
T TIX(B0YE | T- TDAGOIE | T TIX(P0IE | T L IX(20E | 1-,TLXE T, T1%E T TT%E T-,TI%Z | T-¢11%2 | (oTx0T) [ 11
._”In_qD._”Xm.N .ﬁl_umD._“X._”.mH ._”ImD._“XmH AImDHXmH HIMDAXMH HlmDHXmH ._”ImD._“Xm.NH ._”IwD._“XNH AImDHXmH _”IN.D._“H 0T
i EEBEEEEEE0E | BREEEREEET BEGRREEEE BEGEEREE BEGEERZ BEGEZD BEGET BEGT BE
T-g %4 8 87 it 32 38985982 $898862 288302 38931 2881 2% &
Hlﬁw 2T LALLLLLLLTE | LALLLLLLEZE LLLLLLLZE LLLLLLTE LLLLLOZ LLLLLT LLLLT gl Ll 8
T-grd %9 99999999997 | 9999099941 9999999971 99999541 9999981 9999971 EREE 29071 a3 L
Tﬂ@ *¥'E §959959559595TT | S59559559521 GG5G5552T 949595587 S959455T 9495547 55511 5407 55 4
Hlﬂm. PR R R PP i il FrErrr il FrFFFFOT FrFFFOT FrFFOT FFFOT Tl i g
T-,F*T8 SEEEEEEEET SE8EEEEET 5888802 SEEEEEE SEEEEE 58888 RSt 68 &8 ¥
Tmﬁm 071 2522281 252022 25228 2582 252 2¢1 3¢ £
0z 0t 3 i 4 4 5 ¥ i 2 i) 4

Table 2. The greatest expanded number according to p, q.
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