Honam Mathematical J. ${\bf 37}$ (2015), No. 4, pp. 513–527 http://dx.doi.org/10.5831/HMJ.2015.37.4.513

(k_1, \cdots, k_n) -CONVEXITY IN \mathbb{R}^n

SUNG-HEE PARK

Abstract. In this paper, we first introduce and study new concepts of (k_1, \dots, k_n) -convexity and k-segment. Secondly, we shall discuss some properties of nonisotropically starlike domains in \mathbb{R}^n with respect to the origin.

1. Introduction

In this paper, we introduce new notions of convexity, derived from the notion of "generalized balanced domain", can be found in [1] and [3]. We also study some basic properties of these new notions. Next, we propose a modified line segment "k-segment" and give its elementary properties. Finally, we recall the definition of a nonisotropically starlike domain in \mathbb{R}^n with respect to the origin and present some related elementary results.

We refer to, e.g. [2], for general information about convexity in the classical sense used throughout this paper.

2. (k_1, \cdots, k_n) -convex sets in \mathbb{R}^n

Throughout in this paper we fix a natural number $n \in \mathbb{N}$ and we always let $\mathbf{k} := (k_1, \dots, k_n) \in \mathbb{N}^n$. A set $S \subset \mathbb{R}^n$ is called \mathbf{k} -convex if either $S = \emptyset$ or, whenever $(1 - t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y} \in S$ for any $\mathbf{x}, \mathbf{y} \in S$ and any $t \in [0, 1]$, where we denote $t^{\mathbf{k}}\mathbf{x} := (t^{k_1}x_1, \dots, t^{k_n}x_n)$ for $\mathbf{x} := (x_1, \dots, x_n)$ and $t \ge 0$.

Received November 10, 2015. Accepted December 1, 2015.

²⁰¹⁰ Mathematics Subject Classification. 26B25, 26A51.

Key words and phrases. (k_1, \dots, k_n) -convex set, (k_1, \dots, k_n) -convex function, quasi- (k_1, \dots, k_n) -convex function, k-segment, (k_1, \dots, k_n) -nonisotropically starlike with respect to the origin.

Example 2.1. The followings are some examples of k-convex sets:

(a) For $\mathbf{x}^0 := (x_1^0, \cdots, x_n^0) \in \mathbb{R}^n$ the set $\{\mathbf{x} \in \mathbb{R}^n : \operatorname{sgn}(x_j) = \operatorname{sgn}(x_j^0), j = 1, \cdots, n\}$ is k-convex.

(b) If $k_1 \leq \cdots \leq k_n$, then the set $\{\mathbf{x} \in \mathbb{R}^n : x_1 \geq \cdots \geq x_n \geq 0\}$ is **k**-convex.

(c) For $r_1, \dots, r_n > 0$ the open (resp. closed) *n*-polydisk $\prod_{j=1}^n (-r_j, r_j)$, $\prod_{j=1}^n [-r_j, r_j]$ are **k**-convex.

(d) It follows from the Minkowski inequality that for every r > 0the open (resp. closed) n-ball $\{\mathbf{x} \in \mathbb{R}^n : \sum_{j=1}^n x_j^2 < r^2\}$, $\{\mathbf{x} \in \mathbb{R}^n : \sum_{j=1}^n x_j^2 \leq r^2\}$ are k-convex.

Example 2.2. Let $\mathbf{1} := (1, \dots, 1) \in \mathbb{R}^n$ and let $k \in \mathbb{N}$.

(a) Obviously, any 1-convex set is convex in the classical sense.

(b) A closed half-space or an open half-space is a k1-convex set.

(c) A set that is the intersection of a finite number of close half-spaces is called a *convex polytope*. Since a half-space is a k1-convex set, any convex polytope is a k1-convex set.

We can easily check the following results

Proposition 2.3. (a) If a set $S \subset \mathbb{R}^n$ is k-convex, so is \overline{S} .

(b) If two sets $S, T \subset \mathbb{R}^n$ are k-convex, so is $S + T := \{ \mathbf{x} + \mathbf{y} : \mathbf{x} \in S, \mathbf{y} \in T \}.$

(c) The intersection of any number of k-convex sets is k-convex.

Remark 2.4. The empty set is **k**-convex, but every nonempty finite subset of \mathbb{R}^n is not **k**-convex. For example, if $x_j \neq 0$, $k_j \neq 1$ for some j, then the singleton set $\{\mathbf{x}\}$ is not **k**-convex, because

$$\left(\frac{1}{2}\right)^{\mathbf{k}}\mathbf{x} + \left(\frac{1}{2}\right)^{\mathbf{k}}\mathbf{x} = \left(\frac{1}{2}\right)^{\mathbf{k}-1}\mathbf{x} \neq \mathbf{x}.$$

In particular, in contrast to Proposition 2.3 (c), a union of \mathbf{k} -convex sets is not \mathbf{k} -convex in general.

Remark 2.5. Since a translated set $\mathbf{x} + S := {\mathbf{x} + \mathbf{y} : \mathbf{y} \in S}$ of a **k**-convex set S with $\mathbf{x} \neq \mathbf{0}$ is not **k**-convex in general, e.g., consider the set

 $(1,3) \times \cdots \times (1,3) = 2\mathbf{1} + (-1,1) \times \cdots \times (-1,1)$

and see Example 5.2. Furthermore, any open *n*-ball with center $\mathbf{x} \neq \mathbf{0}$ is not **k**-convex whenever $\mathbf{k} \neq \mathbf{1}$. In particular, the **k**-convexity of sets is in general not translation invariant.

3. (k_1, \cdots, k_n) -convex functions

Now we introduce the notion of a **k**-convex function.

Definition 3.1. Let $S \subset \mathbb{R}^n$ be a k-convex set. A function $f: S \longrightarrow \mathbb{R}$ is called k-convex whenever

$$f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \le (1-t)f(\mathbf{x}) + tf(\mathbf{y})$$

for $\mathbf{x}, \mathbf{y} \in S$ and $t \in [0, 1]$. If strict inequality holds in the previous inequality whenever $\mathbf{x} \neq \mathbf{y}$ and 0 < t < 1, we say that f is strictly **k**-convex on S. The epigraph of f is defined as

$$\operatorname{Epi}(f) := \{ (\mathbf{x}, a) \in \mathbb{R}^n \times \mathbb{R} : \mathbf{x} \in S, \, f(\mathbf{x}) \le a \}.$$

Remark 3.2. (a) Any linear combination with positive coefficients of **k**-convex functions is **k**-convex.

(b) If f is a **k**-convex function on a **k**-convex subset S of \mathbb{R}^n and a function $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ is non-decreasing and convex, then $\phi \circ f : S \longrightarrow \mathbb{R}$ is **k**-convex.

Example 3.3. The function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$, defined by

$$f(\mathbf{x}) := \sum_{j=1}^{n} |x_j|^{1/k_j} \qquad (\mathbf{x} \in \mathbb{R}^n),$$

is k-convex, because

$$|(1-t)^{k_j}x_j + t^{k_j}y_j|^{1/k_j} \le (1-t)|x_j|^{1/k_j} + t|y_j|^{1/k_j} \quad (j = 1, \cdots, n)$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $t \in [0, 1]$. In particular, in view of Remark 3.2 (b), there are lots of other **k**-convex functions from \mathbb{R}^n to \mathbb{R} .

We now present a characterization of k-convexity for functions

Theorem 3.4. Let $S \subset \mathbb{R}^n$ be a k-convex set. For a function $f : S \longrightarrow \mathbb{R}$, the following statements are equivalent:

- (a) f is **k**-convex.
- (b) Epi(f) is $(\mathbf{k}, 1)$ -convex, where $(\mathbf{k}, 1) := (k_1, \dots, k_n, 1)$.

(c) (Jensen's Inequality) For every $x^1, \dots, x^m \in S$ and nonnegative real numbers t_1, \dots, t_m with $1 = \sum_{i=1}^m t_i$, we have

(1)
$$f\left(\sum_{i=1}^{m} t_i^{\mathbf{k}} \mathbf{x}^i\right) \le \sum_{i=1}^{m} t_i f(\mathbf{x}^i)$$

Proof. (a) \Longrightarrow (b): Let $(\mathbf{x}, a), (\mathbf{y}, b) \in \text{Epi}(f)$ and let $0 \le t \le 1$. Then $f(\mathbf{x}) \le a, f(\mathbf{y}) \le b$, and also the $(\mathbf{k}, 1)$ -convexity of f implies that

$$f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \le (1-t)f(\mathbf{x}) + tf(\mathbf{y}) \le (1-t)a + tb.$$

But since $(1-t)^{(\mathbf{k},1)}(\mathbf{x},a) + t^{(\mathbf{k},1)}(\mathbf{y},b) = ((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}, (1-t)a + tb),$ the set Epi(f) is $(\mathbf{k}, 1)$ -convex.

(b) \Longrightarrow (a): Let $\mathbf{x}, \mathbf{y} \in S$ and let $0 \le t \le 1$. It is clear that $(\mathbf{x}, f(\mathbf{x}))$, $(\mathbf{y}, f(\mathbf{y})) \in \operatorname{Epi}(f)$, and by the $(\mathbf{k}, 1)$ -convexity of $\operatorname{Epi}(f)$ one has

$$((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}, (1-t)f(\mathbf{x}) + tf(\mathbf{y}))$$

= $(1-t)^{(\mathbf{k},1)}(\mathbf{x}, f(\mathbf{x})) + t^{(\mathbf{k},1)}(\mathbf{y}, f(\mathbf{y})) \in \text{Epi}(f),$

that is, $f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \leq (1-t)f(\mathbf{x}) + tf(\mathbf{y})$. Thus f is k-convex.

(c) \Longrightarrow (a): It is trivial.

(a) \Longrightarrow (c): Let us use mathematical induction on m. The inequality (1) is true for m = 1. Assume the inequality (1) holds for the integer $m \ge 1$, let $\mathbf{x}^1, \dots, \mathbf{x}^{m+1} \in S$ and let $t_i \ge 0$ $(i = 1, \dots, m+1)$ with $1 = \sum_{i=1}^{m+1} t_i$. At least one of t_1, \dots, t_{m+1} must be less than 1 (otherwise the inequality (1) is trivial). Now we may assume that $t_{m+1} < 1$. Let $t := 1 - t_{m+1}$ and $s_i := t_i/t$ $(i = 1, \dots, m)$. Then $0 \le t \le 1$, $\sum_{i=1}^m s_i = 1$, $\mathbf{y} := \sum_{i=1}^m s_i^{\mathbf{k}} \mathbf{x}^i \in S$, and

$$\mathbf{x} := \sum_{i=1}^{m+1} t_i^{\mathbf{k}} \mathbf{x}^i = t^{\mathbf{k}} \mathbf{y} + (1-t)^{\mathbf{k}} \mathbf{x}^{m+1}.$$

But since f is k-convex on S, $f(\mathbf{x}) \leq tf(\mathbf{y}) + (1-t)f(\mathbf{x}^{m+1})$ and, by our induction hypothesis, $f(\mathbf{y}) \leq \sum_{i=1}^{m} s_i f(\mathbf{x}^i)$. Hence, combining the

above two inequalities, we get that

$$f\left(\sum_{i=1}^{m+1} t_i^{\mathbf{k}} \mathbf{x}^i\right) \le t \sum_{i=1}^m s_i f(\mathbf{x}^i) + (1-t) f(\mathbf{x}^{m+1}) \\ \le \sum_{i=1}^m t_i f(\mathbf{x}^i) + t_{m+1} f(\mathbf{x}^{m+1}) = \sum_{i=1}^{m+1} t_i f(\mathbf{x}^i).$$

Thus, the inequality (1) is established for $m \rightsquigarrow m+1$, and therefore, by mathematical induction, it holds for any natural number m.

Notice that the infimum taken over the empty set is, by convention, assumed to be $+\infty$.

Theorem 3.5. Let $E \subset \mathbb{R}^{n+1}$ be a $(\mathbf{k}, 1)$ -convex set. If a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $f(\mathbf{x}) := \inf\{c \in \mathbb{R} : (\mathbf{x}, c) \in E\}$ is **k**-convex.

Proof. In view of Theorem 3.4, it suffices to show that the set Epi(f) is $(\mathbf{k}, 1)$ -convex. For this, let $(\mathbf{x}, a), (\mathbf{y}, b) \in \text{Epi}(f)$ and let $\epsilon > 0$. Since $f(\mathbf{x}) < a + \epsilon$ and $f(\mathbf{y}) < b + \epsilon$, it follows from the definition of f that there exist $c, d \in \mathbb{R}$ such that $c < a + \epsilon, d < b + \epsilon$, and $(\mathbf{x}, c), (\mathbf{y}, d) \in E$. The $(\mathbf{k}, 1)$ -convexity of E implies that for any $t \in [0, 1]$ one has

$$((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}, (1-t)c + td) = (1-t)^{(\mathbf{k},1)}(\mathbf{x},c) + t^{(\mathbf{k},1)}(\mathbf{y},d) \in E$$

and so $f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \leq (1-t)c + td < (1-t)a + tb + \epsilon$. But since ϵ was arbitrary, $f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \leq (1-t)a + tb$, that is, $(1-t)^{(\mathbf{k},1)}(\mathbf{x},a) + t^{(\mathbf{k},1)}(\mathbf{y},b) \in \operatorname{Epi}(f)$, as desired.

The next result can be easily checked.

Proposition 3.6. Let $S \subset \mathbb{R}^n$ be a k-convex set. If $f : S \longrightarrow \mathbb{R}$ is k-convex, then, to every $c \in \mathbb{R}$ two sets $S_c(f) := \{\mathbf{x} \in S : f(\mathbf{x}) < c\}$ and $\overline{S}_c(f) := \{\mathbf{x} \in S : f(\mathbf{x}) \leq c\}$ are k-convex.

Remark 3.7. The fact that the converse of the above proposition does not hold in general can be easily seen from the function $x \mapsto x^{1/(2k)}$ from $[0, \infty)$ to \mathbb{R} , where $k \in \mathbb{N}$.

Example 3.8. (cf. [2], p.109) Let S be nonempty and closed. Define

$$d_S(\mathbf{x}) := \min\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{y} \in S\} \quad \text{for any } \mathbf{x} \in \mathbb{R}^n.$$

Then the function d_S is **k**-convex on \mathbb{R}^n if and only if S is a **k**-convex set.

Proposition 3.9. If $\{f_{\alpha}\}_{\alpha \in \Lambda}$ is a family of k-convex functions on a k-convex set $S \subset \mathbb{R}^n$, its upper envelope $f : S \longrightarrow \mathbb{R}$, defined by $f(\mathbf{x}) := \sup_{\alpha \in \Lambda} f_{\alpha}(\mathbf{x})$ for $\mathbf{x} \in S$ is also k-convex.

Proof. Since each f_{α} is **k**-convex, in virtue of Theorem 3.4, each $\operatorname{Epi}(f_{\alpha})$ is $(\mathbf{k}, 1)$ -convex. Hence the $(\mathbf{k}, 1)$ -convexity of $\operatorname{Epi}(f)$ follows immediately from the fact that $\operatorname{Epi}(f) = \bigcap_{\alpha \in \Lambda} \operatorname{Epi}(f_{\alpha})$ and, by Theorem 3.4, the function f is **k**-convex.

We finish this section by introducing the notion of quasi-**k**-convexity.

Definition 3.10. A function f defined on a **k**-convex set $S \subset \mathbb{R}^n$ is called quasi-**k**-convex whenever $f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \leq \max\{f(\mathbf{x}), f(\mathbf{y})\}$ for any $\mathbf{x}, \mathbf{y} \in S$ and $t \in [0, 1]$.

Proposition 3.11. A function f defined on a **k**-convex set $S \subset \mathbb{R}^n$ is quasi-**k**-convex if and only if the sub-level set $\overline{S}_c(f)$ is **k**-convex for every $c \in \mathbb{R}$.

Proof. (\Longrightarrow) Fix $c \in \mathbb{R}$. Let $\mathbf{x}, \mathbf{y} \in \overline{S}_c(f)$ and let $t \in [0, 1]$. Then the **k**-convexity of S(resp. f) implies that $(1 - t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y} \in S$ and

$$f((1-t)^{\mathbf{k}}\mathbf{x}+t^{\mathbf{k}}\mathbf{y}) \le (1-t)f(\mathbf{x})+tf(\mathbf{y}) \le (1-t)c+tc=c,$$

so $(1-t)^{\mathbf{k}}\mathbf{x}+t^{\mathbf{k}}\mathbf{y} \in \overline{S}_{c}(f).$

(\Leftarrow) Let $\mathbf{x}, \mathbf{y} \in S$ and let $t \in [0, 1]$. If we put $c := \max\{f(\mathbf{x}), f(\mathbf{y})\}$, it is clear that $\mathbf{x}, \mathbf{y} \in \overline{S}_c(f)$, and so by the k-convexity of $\overline{S}_c(f)$ one has $(1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y} \in \overline{S}_c(f)$, i.e., $f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \leq \max\{f(\mathbf{x}), f(\mathbf{y})\}$. \Box

Corollary 3.12. (i) If f_1, \dots, f_m are quasi-**k**-convex on a **k**-convex subset S of \mathbb{R}^n and $c_1, \dots, c_m \ge 0$, then $f := \max\{c_j f_j : j = 1, \dots, m\}$ is a quasi-**k**-convex function on S.

(ii) If f is a quasi-**k**-convex function on a **k**-convex subset S of \mathbb{R}^n and $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ is a non-decreasing function, then $\phi \circ f : S \longrightarrow \mathbb{R}$ is quasi-**k**-convex

The proofs of the above results are trivial and we omit it.

4. Extrema of (k_1, \dots, k_n) -convex functions

Proposition 4.1. Let $S \subset \mathbb{R}^n$ be compact and k-convex. If a function $f: S \longrightarrow \mathbb{R}$ is continuous and strictly k-convex, then there exists a unique $\mathbf{x}^0 \in S$ such that $f(\mathbf{x}^0) \leq f(\mathbf{x})$ for any $\mathbf{x} \in S$.

$$(k_1, \cdots, k_n)$$
-convexity in \mathbb{R}^n 519

Proof. The existence of $\mathbf{x}^0 \in S$ is guaranteed by the fact that S is compact and f is continuous on S. To show the uniqueness of the point \mathbf{x}^0 , we assume that there is a $\mathbf{x}^1 \in S$ with $\mathbf{x}^1 \neq \mathbf{x}^0$ such that $f(\mathbf{x}^1) \leq f(\mathbf{x})$ for any $\mathbf{x} \in S$. For any $t \in (0, 1)$, using the strict **k**-convexity of f,

$$f((1-t)^{\mathbf{k}}\mathbf{x}^{0} + (1-t)^{\mathbf{k}}\mathbf{x}^{1}) < (1-t)f(\mathbf{x}^{0}) + tf(\mathbf{x}^{1});$$

moreover, using the fact that \mathbf{x}^0 and \mathbf{x}^1 are minimums, one has

$$f((1-t)^{\mathbf{k}}\mathbf{x}^{0} + (1-t)^{\mathbf{k}}\mathbf{x}^{1})$$

< $(1-t)f((1-t)^{\mathbf{k}}\mathbf{x}^{0} + (1-t)^{\mathbf{k}}\mathbf{x}^{1}) + tf((1-t)^{\mathbf{k}}\mathbf{x}^{0} + (1-t)^{\mathbf{k}}\mathbf{x}^{1})$
= $f((1-t)^{\mathbf{k}}\mathbf{x}^{0} + (1-t)^{\mathbf{k}}\mathbf{x}^{1})$

which is a contradiction.

We now present a maximum principle for \mathbf{k} -convex functions as follows.

Theorem 4.2. If f is a k-convex function on a k-convex subset S of \mathbb{R}^n and attains a global maximum at an interior point of S, then f is constant on S.

Proof. Assume that f is not constant and attains a global maximum at the point $\mathbf{p} \in \text{int}S$. Choose r > 0 with $\mathbb{B}_n(\mathbf{p}; r) := {\mathbf{u} \in \mathbb{R}^n :$ $\|\mathbf{u} - \mathbf{p}\| < r} \subset S$ and $\mathbf{x} \in S$ with $f(\mathbf{x}) < f(\mathbf{p})$. For any $0 < \epsilon < 1$ we put $\mathbf{y}_{\epsilon} := (y_1, \dots, y_n) \in \mathbb{R}^n$, where

$$y_j := (1+\epsilon)^{k_j} p_j - \epsilon^{k_j} x_j$$
 for $j = 1, \cdots, n$.

Observe that

$$\mathbf{y}_{\epsilon} - \mathbf{p} = \sum_{j=1}^{n} \left\{ \left[(1+\epsilon)^{k_j} - 1 \right] p_j - \epsilon^{k_j} x_j \right\} \mathbf{e}_j$$
$$= \sum_{j=1}^{n} \left[\left\{ \sum_{i=1}^{k_j-1} \binom{k_j}{i} \epsilon^i p_j \right\} + \epsilon^{k_j} (p_j - x_j) \right] \mathbf{e}_j$$

where $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is the standard basis for \mathbb{R}^n , and also

$$\|\mathbf{y}_{\epsilon} - \mathbf{p}\| \leq \sqrt{n} \max_{j=1,\cdots,n} \left[\left\{ \sum_{i=1}^{k_j-1} \binom{k_j}{i} \epsilon^i |p_j| \right\} + \epsilon^{k_j} |p_j - x_j| \right] \\ \leq \sqrt{n} M \epsilon \|\mathbf{p}\|_{\infty} + \epsilon \|\mathbf{p} - \mathbf{x}\|_{\infty} \leq \epsilon \left(\sqrt{n} M \|\mathbf{p}\| + \|\mathbf{p} - \mathbf{x}\|\right)$$

where $M := \max_{j=1,\dots,n} \sum_{i=1}^{k_j-1} {k_j \choose i}$, $\|\mathbf{p}\|_{\infty} := \max_{j=1,\dots,n} |p_j|$. Hence, we can choose a sufficiently small $\epsilon \in (0,1)$ so that $\mathbf{y}_{\epsilon} \in \mathbb{B}_n(\mathbf{p};r)$. On the other hand, for every $j = 1, \dots, n$ one has

$$p_j = \frac{1}{(1+\epsilon)^{k_j}} \left(y_j + \epsilon^{k_j} x_j \right) = \left(\frac{1}{1+\epsilon} \right)^{k_j} y_j + \left(\frac{\epsilon}{1+\epsilon} \right)^{k_j} x_j,$$

that is, $\mathbf{p} = (1/(1+\epsilon))^k \mathbf{y}_{\epsilon} + (\epsilon/(1+\epsilon))^k \mathbf{x}$, which yields a contradiction since

$$f(\mathbf{p}) \le \frac{1}{1+\epsilon} f(\mathbf{y}_{\epsilon}) + \frac{\epsilon}{1+\epsilon} f(\mathbf{x}) < \frac{1}{1+\epsilon} f(\mathbf{p}) + \frac{\epsilon}{1+\epsilon} f(\mathbf{p}) = f(\mathbf{p})$$

by the **k**-convexity of f.

Proposition 4.3. Let f be a **k**-convex function on a **k**-convex subset S of \mathbb{R}^n . Then the set of points, $A_{\min}(f)$, at which f attains its minimum is **k**-convex.

Proof. Assume that $A_{\min}(f) \neq \emptyset$. Let *m* be the minimal value attained by *f* on *S*. For any $\mathbf{x}, \mathbf{y} \in A_{\min}(f)$ and any $t \in [0, 1]$, one has $(1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y} \in S$ and

 $m \le f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \le (1-t)f(\mathbf{x}) + tf(\mathbf{y}) = (1-t)m + tm = m$

and so $(1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y} \in A_{\min}(f)$. Hence the set $A_{\min}(f)$ is k-convex. \Box

Proposition 4.4. Let f be a k-convex function on an open k-convex subset S of \mathbb{R}^n . Then every local minimum of f is a global minimum of f on S.

Proof. Suppose that f attains a local minimum at a point $\mathbf{x}^0 \in S$. Then $f(\mathbf{x}) \geq f(\mathbf{x}^0)$ for all \mathbf{x} in a sufficiently small neighborhood $\mathbb{B}_n(\mathbf{x}^0; \delta) \subset S$. Let \mathbf{x} be any point in S. Since $t \mapsto (1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{x}^0$ is a continuous function passing through the point \mathbf{x}^0 , we can find some $t \in (0, 1)$ sufficiently close to 1 such that $(1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{x}^0 \in \mathbb{B}_n(\mathbf{x}^0; \delta)$, and also $f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{x}^0) \geq f(\mathbf{x}^0)$. But since f is \mathbf{k} -convex on S, one has $(1-t)f(\mathbf{x}) + tf(\mathbf{x}^0) \geq f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{x}^0)$. Combining the last two inequalities, we get that $f(\mathbf{x}) \geq f(\mathbf{x}^0)$. Hence f attains a global minimum at the point \mathbf{x}^0 .

Proposition 4.5. Let f be a strictly k-convex function on an open k-convex subset S of \mathbb{R}^n . If f attains its minimum on S, it is attained at a unique point of S.

$$(k_1, \cdots, k_n)$$
-convexity in \mathbb{R}^n 521

Proof. Suppose that $A_{\min}(f)$ contains two distinct points $\mathbf{x}, \mathbf{y} \in S$ and put $m := f(\mathbf{x}) = f(\mathbf{y})$. By the strictly **k**-convexity of f, one has $m \leq f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) < (1-t)f(\mathbf{x}) + tf(\mathbf{y}) = m$ for 0 < t < 1 which is a contradiction.

5. k-segments in \mathbb{R}

Let $k \in \mathbb{N}$. For $x, y \in \mathbb{R}$ with $x \leq y$, the k-segment (determined by x and y) is defined by

$$[x,y]_k := \{(1-t)^k x + t^k y : 0 \le t \le 1\}$$

First we will give some elementary properties of this k-segment.

Lemma 5.1. Let $k \in \mathbb{N}$. Then any k-segment is a closed interval in \mathbb{R} , and $[x, y] \subseteq [x, y]_k$, where the equality holds iff k = 1 or $xy \leq 0$. More explicitly, there exists a point $\Phi_k(x, y) \in \mathbb{R}$ such that

$$[x,y] \subset [x,y]_k = \begin{cases} [\Phi_k(x,y),y] \subset (0,y] & (y > x > 0) \\ [x,y] & (x < 0 < y \text{ or } xy = 0) \\ [x,\Phi_k(x,y)] \subset [x,0) & (x < y < 0) \end{cases}$$

where

$$\Phi_k(x,y) = \left(\frac{y^{1/(k-1)}}{x^{1/(k-1)} + y^{1/(k-1)}}\right)^k x + \left(\frac{x^{1/(k-1)}}{x^{1/(k-1)} + y^{1/(k-1)}}\right)^k y$$

for y > x > 0 and $\Phi_k(x, y) = -\Phi_k(-y, -x)$ for x < y < 0. In particular,

(2) $0 < \Phi_k(x, y) < x \quad (y > x > 0),$

(3)
$$y < \Phi_k(x, y) < 0$$
 $(x < y < 0)$

Proof. Define $\phi : [0,1] \longrightarrow \mathbb{R}$ by $\phi(t) := (1-t)^k x + t^k y, t \in [0,1]$. Then ϕ is a (continuous) polynomial of one variable t connecting $x = \phi(0)$ with $y = \phi(1)$, which gives $[x, y] \subset \phi([0, 1])$, and also

$$\phi'(t) = k\{t^{k-1}y - (1-t)^{k-1}x\} \qquad (0 \le t \le 1).$$

Moreover, if k > 1 then we have:

(i) in case $xy \ge 0, x \ne 0$: one has

$$\phi'(t) = 0 \quad \Longleftrightarrow \quad t = \frac{1}{1 + \sqrt[k-1]{y/x}} =: t_0$$

and in particular,

- in case x > 0: y > 0 and ϕ is strictly decreasing and increasing on $[0, t_0]$ and $[t_0, 1]$, respectively, and ϕ has the minimum at t_0 . In particular, $[x, y] \subset [x, y]_k = [\phi(t_0), y] \subset (0, y];$
- in case x < 0: y < 0 and φ is strictly increasing and decreasing on [0, t₀] and [t₀, 1], respectively, and φ has the maximum at t₀. In particular, [x, y] ⊂ [x, y]_k = [x, φ(t₀)] ⊂ [x, 0).
- (ii) in case $xy \leq 0$ and $x \neq 0$: x < 0, y > 0, and $\phi'(t) \geq 0, t \in [0, 1]$, with equality holds iff t = 1, y = 0, which implies that ϕ is strictly increasing on [0, 1]. In particular, $[x, y] = [x, y]_k$.
- (iii) in case xy = 0: $\phi'(t) \ge 0$, $t \in [0, 1]$, with equality holds iff x = t = 0 or y = t 1 = 0, which implies that ϕ is strictly increasing on [0, 1]. In particular, $[0, y] = [0, y]_k$ and $[x, 0] = [x, 0]_k$,

as desired.

Example 5.2. Note that $[0,0]_k = [0,0]$ and $([0,0]_k)_k = [0,0]$. For any $x \ge 0$ one has $[x,x]_k = \left[\frac{x}{2^{k-1}},x\right]$, since by Lemma 5.1

$$\Phi_k(x,x) = \left(\frac{1}{2}\right)^k x + \left(\frac{1}{2}\right)^k x = \frac{x}{2^{k-1}} \qquad (x>0).$$

In particular, any singleton set with a nonzero real number is never k-convex for $k \in \mathbb{N} \setminus \{1\}$.

Lemma 5.3. Let $k \in \mathbb{N} \setminus \{1\}$. For any $a, b, x, y \in \mathbb{R}$ with $0 \le a < b$ and $0 \le x < y$, one has

(4)
$$\Phi_k(a,b) \le \Phi_k(x,y) \iff BY(X-A) - AX(B-Y) \ge 0$$

where Φ_k is as in Lemma 5.1 and $A := a^{1/(k-1)}, B := b^{1/(k-1)}, X := x^{1/(k-1)}, Y := y^{1/(k-1)}.$

Proof. Let $p, q \in \mathbb{R}$ with $0 \le p < q$. Observe that $\Phi_k(0,q) = 0$, and in case p > 0 one has

$$\Phi_k(p,q) = \left(\frac{Q}{P+Q}\right)^k P^{k-1} + \left(\frac{P}{P+Q}\right)^k Q^{k-1}$$
$$= \left(\frac{PQ}{P+Q}\right)^k \left(\frac{1}{P} + \frac{1}{Q}\right)$$
$$= \left(\frac{1}{P} + \frac{1}{Q}\right)^{1-k}$$

where $P := p^{1/(k-1)}, Q := q^{1/(k-1)}$. Hence,

$$\Phi_k(a,b) \le \Phi_k(x,y) \iff \frac{1}{X} + \frac{1}{Y} \le \frac{1}{A} + \frac{1}{B}$$

 (k_1, \cdots, k_n) -convexity in \mathbb{R}^n

which implies (4) as desired.

523

Proposition 5.4. Let $k \in \mathbb{N} \setminus \{1\}$. For $x, y, b \in \mathbb{R}$ with $0 \le x \le y \le b$, we have $[y, b]_k \subset [x, b]_k$, and $[y, b]_k \subset ([y, b]_k)_k$.

Proof. If we put $X := x^{1/(k-1)}$, $Y := y^{1/(k-1)}$, $B := b^{1/(k-1)}$, then $BB(Y - X) - XY(B - B) = B^2(Y - X) \ge 0$, and so the first assertion is true by Lemma 5.3. And the second assertion is also true, because

$$\Phi_k(\Phi_k(y,b),b) < \Phi_k(y,b) \qquad (0 \le y < b)$$

by (2) of Lemma 5.1.

In contrast to the result of Proposition 5.4, the inclusion $[x, y]_k \subset [a, b]_k$ does not hold for $0 < a \le x < y \le b$ in general, as follows:

Example 5.5. In the case: $k \ge 2, a := 1, x := (3/2)^{k-1}, y := 2^{k-1}, b > 0$. Note that

$$BY(X - A) - AX(B - Y) = B \cdot 2 \cdot \frac{1}{2} - 1 \cdot \frac{3}{2} \cdot (B - 2) = \frac{6 - B}{2}$$

which implies that in that case $\Phi_k(a,b) \leq \Phi_k(x,y)$ iff $0 < b \leq 6^{k-1}$. More generally, if a := 1, $x := (m+1)^{k-1}$, $y < (1+\frac{1}{m})^{k-1}$ with 0 < m < 1, one has a < x < y < b, Ym < m+1, and

$$BY(X - A) - AX(B - Y) = B(Ym - m - 1) + (m + 1)Y,$$

which implies that in that case

$$\Phi_k(a,b) \le \Phi_k(x,y) \iff 0 < b \le \left\{ \frac{(m+1)y^{1/(k-1)}}{m+1 - my^{1/(k-1)}} \right\}^{k-1}$$

The following result gives us the concrete form for iterated k-segment.

Proposition 5.6. Let $k \in \mathbb{N} \setminus \{1\}$ and let $x, y \in \mathbb{R}$, $0 \le x \le y$, where x, y are not all zero. Then we have for any $n \in \mathbb{N}$,

(5)
$$[x_n, y] := \underbrace{((([x, y]_k)_k) \cdots)_k}_{n-times} = \left\lfloor \frac{xy}{\{nx^{1/(k-1)} + y^{1/(k-1)}\}^{k-1}}, y \right\rfloor.$$

In particular, if x > 0 then $0 < x_n \longrightarrow 0$ as $n \longrightarrow \infty$.

Proof. We can easily verify that

(6)
$$x_n = \Phi_k(x_{n-1}, y) = \frac{x_{n-1}y}{\left\{x_{n-1}^{1/(k-1)} + y^{1/(k-1)}\right\}^{k-1}}$$

where $x_0 := x$, using mathematical induction and Lemma 5.1. Note that

$$x_1 = \frac{xy}{\left\{x^{1/(k-1)} + y^{1/(k-1)}\right\}^{k-1}} = \left(\frac{x^{1/(k-1)}y^{1/(k-1)}}{x^{1/(k-1)} + y^{1/(k-1)}}\right)^{k-1}$$

Assume that (5) is true for any positive integer n. Observe that

$$x_n = \frac{xy}{\left\{nx^{1/(k-1)} + y^{1/(k-1)}\right\}^{k-1}} = \left(\frac{x^{1/(k-1)}y^{1/(k-1)}}{nx^{1/(k-1)} + y^{1/(k-1)}}\right)^{k-1}$$

and so, by (6),

$$x_{n+1} = \frac{x_n y}{\left\{x_n^{1/(k-1)} + y^{1/(k-1)}\right\}^{k-1}}$$
$$= \frac{\frac{xy}{\left\{nx^{1/(k-1)} + y^{1/(k-1)}\right\}^{k-1}}y}{\left\{\frac{x^{1/(k-1)}y^{1/(k-1)}}{nx^{1/(k-1)} + y^{1/(k-1)}} + y^{1/(k-1)}\right\}^{k-1}}$$
$$= \frac{xy^2}{\left\{(n+1)x^{1/(k-1)} + y^{1/(k-1)}\right\}^{k-1}}y$$
$$= \frac{xy}{\left\{(n+1)x^{1/(k-1)} + y^{1/(k-1)}\right\}^{k-1}}$$

as desired. Hence by mathematical induction (5) is correct for all positive integers n.

6. Nonisotropically Starlike Sets in \mathbb{R}^n

Definition 6.1. Let $n \in \mathbb{N}$ with $n \geq 2$. A set $S \subset \mathbb{R}^n$ is said to be **k**-nonisotropically starlike with respect to the origin whenever $t^{\mathbf{k}}\mathbf{x} \in S$ for any $\mathbf{x} \in S$ and $t \in [0, 1]$.

Remark 6.2. (a) A set $S \subset \mathbb{R}^n$ is stralike with respect to the origin if and only if it is 1-nonisotropically starlike with respect to the origin.

(b) Any **k**-convex subset of \mathbb{R}^n containing the origin is **k**-nonisotropically starlike with respect to the origin.

(c) If f is a k-convex function on a k-nonisotropically starlike set $S \subset \mathbb{R}^n$ with respect to the origin satisfying $f(\mathbf{0}) \leq 0$, then

$$f(t^{\mathbf{k}}\mathbf{x}) = f(t^{\mathbf{k}}\mathbf{x} + (1-t)^{\mathbf{k}}\mathbf{0}) \le tf(\mathbf{x}) + (1-t)f(\mathbf{0}) \le tf(\mathbf{x})$$

for any $\mathbf{x} \in S$ and $t \in [0, 1]$.

Definition 6.3. A function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is called positively k-homogeneous whenever

$$f(t^{\mathbf{k}}\mathbf{x}) = tf(\mathbf{x})$$
 for $\mathbf{x} \in \mathbb{R}^n$ and $t \ge 0$.

Lemma 6.4. A positively k-homogeneous function $f : \mathbb{R}^n \longrightarrow [0, \infty)$ is k-convex if and only if

(7)
$$f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Proof. (\Leftarrow) Let $(\mathbf{x}, a), (\mathbf{y}, b) \in \text{Epi}(f)$. Since $f(\mathbf{x}) \leq a$ and $f(\mathbf{y}) \leq b$, it follows from the subadditivity (7) and the positive **k**-homogeneity of f that

$$f((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) \le f((1-t)^{\mathbf{k}}\mathbf{x}) + f(t^{\mathbf{k}}\mathbf{y})$$

= $(1-t)f(\mathbf{x}) + tf(\mathbf{y}) \le (1-t)a + tb$,

for every $t \in [0, 1]$, so $(1-t)^{(\mathbf{k},1)}(\mathbf{x}, a) + t^{(\mathbf{k},1)}(\mathbf{y}, b) = ((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}, (1-t)a + tb) \in \operatorname{Epi}(f)$. Hence, $\operatorname{Epi}(f)$ is $(\mathbf{k}, 1)$ -convex and we conclude that f is a **k**-convex function according to Theorem 3.4.

 (\Longrightarrow) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and let $\epsilon > 0$. Put

$$\mathbf{x}_{\epsilon} := \left(\frac{1}{f(\mathbf{x}) + \frac{\epsilon}{2}}\right)^{\mathbf{k}} \mathbf{x}, \qquad \mathbf{y}_{\epsilon} := \left(\frac{1}{f(\mathbf{y}) + \frac{\epsilon}{2}}\right)^{\mathbf{k}} \mathbf{y},$$
$$\alpha := \frac{f(\mathbf{x}) + \frac{\epsilon}{2}}{f(\mathbf{x}) + f(\mathbf{y}) + \epsilon}, \qquad \beta := \frac{f(\mathbf{y}) + \frac{\epsilon}{2}}{f(\mathbf{x}) + f(\mathbf{y}) + \epsilon}.$$

Clearly, $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$. Observe that

$$\alpha^{\mathbf{k}}\mathbf{x}_{\epsilon} + \beta^{\mathbf{k}}\mathbf{y}_{\epsilon} = \left(\frac{1}{f(\mathbf{x}) + f(\mathbf{y}) + \epsilon}\right)^{\mathbf{k}} (\mathbf{x} + \mathbf{y}).$$

By the positive **k**-homogeneity and by the **k**-convexity of f we get that

$$\frac{f(\mathbf{x} + \mathbf{y})}{f(\mathbf{x}) + f(\mathbf{y}) + \epsilon} \le \alpha f(\mathbf{x}_{\epsilon}) + \beta f(\mathbf{y}_{\epsilon}) \le \alpha \frac{f(\mathbf{x})}{f(\mathbf{x}) + \frac{\epsilon}{2}} + \beta \frac{f(\mathbf{y})}{f(\mathbf{y}) + \frac{\epsilon}{2}} < 1$$

and so $f(\mathbf{x} + \mathbf{y}) < f(\mathbf{x}) + f(\mathbf{y}) + \epsilon$. But since ϵ was arbitrary, we obtain the required subadditive inequality (7), and the proof is complete. \Box

From now on we assume that $S \subset \mathbb{R}^n$ is a **k**-nonisotropically starlike domain with respect to the origin.

Definition 6.5. We define a functional $h_{\mathbf{k},S} : \mathbb{R}^n \longrightarrow [0, +\infty)$ by

$$h_{\mathbf{k},S}(\mathbf{x}) := \inf\{t > 0 : (1/t)^{\mathbf{k}} \mathbf{x} \in S\} \quad \text{for } \mathbf{x} \in \mathbb{R}^n,$$

which is called the \mathbf{k} -Minkowski functional of S.

We now recall the following elementary properties of Minkowski functionals, which can be found in [1] and [3].

Proposition 6.6. The following properties hold:

- (a) $h_{\mathbf{k},S}(t^{\mathbf{k}}\mathbf{x}) = th_{\mathbf{k},S}(\mathbf{x})$ for any $t \ge 0$ and $\mathbf{x} \in \mathbb{R}^n$.
- (b) $S = \{ \mathbf{x} \in \mathbb{R}^n : h_{\mathbf{k},S}(\mathbf{x}) < 1 \}.$
- (c) $h_{\mathbf{k},S}$ is uniquely determined by (a) and (b)
- (d) $h_{\mathbf{k},S}$ is upper semicontinuous on \mathbb{R}^n .

Finally, we characterize \mathbf{k} -convex sets in terms of its \mathbf{k} -Minkowski functionals:

Theorem 6.7. The following three properties are equivalent:

- (a) S is a **k**-convex set
- (b) $h_{\mathbf{k},S}$ is subadditive, i.e, it satisfies the triangle inequality.
- (c) $h_{\mathbf{k},S}$ is a **k**-convex function

Proof. Since $h_{\mathbf{k},S}$ is nonnegative and positively **k**-homogeneous by Proposition 6.6 (a), the equivalence of (b) and (c) is a consequence of Lemma 6.4.

(b) \Longrightarrow (a): Let $\mathbf{x}, \mathbf{y} \in S$ and $0 \le t \le 1$. Then by (b) and Proposition 6.6, one has

$$\begin{aligned} h_{\mathbf{k},S}((1-t)^{\mathbf{k}}\mathbf{x} + t^{\mathbf{k}}\mathbf{y}) &\leq h_{\mathbf{k},S}((1-t)^{\mathbf{k}}\mathbf{x}) + h_{\mathbf{k},S}(t^{\mathbf{k}}\mathbf{y}) \\ &= (1-t)h_{\mathbf{k},S}(\mathbf{x}) + th_{\mathbf{k},S}(\mathbf{y}) < (1-t) + t = 1. \end{aligned}$$

Hence making use of Proposition 6.6 once more, we have $(1-t)^{\mathbf{k}}\mathbf{x}+t^{\mathbf{k}}\mathbf{y} \in S$.

(a) \Longrightarrow (b): Let $\mathbf{x}, \mathbf{y} \in S$ and let $\epsilon > 0$. Put $\mathbf{x}_{\epsilon}, \mathbf{y}_{\epsilon}, \alpha, \beta$ be as in the proof of Lemma 6.4. Clearly, $\mathbf{x}_{\epsilon}, \mathbf{y}_{\epsilon} \in S$ by Proposition 6.6 (a) and (b). Note that $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$. So the **k**-convexity of S implies that

$$\left(\frac{1}{h_{\mathbf{k},S}(\mathbf{x}) + h_{\mathbf{k},S}(\mathbf{y}) + \epsilon}\right)^{\mathbf{k}} (\mathbf{x} + \mathbf{y}) = \alpha^{\mathbf{k}} \mathbf{x}_{\epsilon} + \beta^{\mathbf{k}} \mathbf{y}_{\epsilon} \in S.$$

By using again Proposition 6.6 (a) and (b), one has $h_{\mathbf{k},S}(\mathbf{x} + \mathbf{y}) < h_{\mathbf{k},S}(\mathbf{x}) + h_{\mathbf{k},S}(\mathbf{y}) + \epsilon$, and the desired result follows since ϵ was arbitrary.

 (k_1, \cdots, k_n) -convexity in \mathbb{R}^n

References

- [1] G. Bharali, Nonisotropically balanced domains, Lempert function estimates, and the spectral Nevanlinna-Pick problem, preprint, 2006.
- [2] W. Fleming, *Functions of Several Variables*, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York/Heidelberg, 1977.
- [3] M. Jarnicki & P. Pflug, Invariant Distances and Metrics in Complex Analysis, 2nd Extended ed., de Gruyter Expositions in Mathematics 9, Walter de Gruyter, 2013.

Sung-Hee Park Department of Mathematics Education, Jeonju University, Jeonju 560-759, Korea. E-mail: wshpark@jj.ac.kr