$\left(k_{1}, \cdots, k_{n}\right)$-CONVEXITY IN \mathbb{R}^{n}

Sung-Hee Park

Abstract

In this paper, we first introduce and study new concepts of (k_{1}, \cdots, k_{n})-convexity and k-segment. Secondly, we shall discuss some properties of nonisotropically starlike domains in \mathbb{R}^{n} with respect to the origin.

1. Introduction

In this paper, we introduce new notions of convexity, derived from the notion of "generalized balanced domain", can be found in [1] and [3]. We also study some basic properties of these new notions. Next, we propose a modified line segment " k-segment" and give its elementary properties. Finally, we recall the definition of a nonisotropically starlike domain in \mathbb{R}^{n} with respect to the origin and present some related elementary results.

We refer to, e.g. [2], for general information about convexity in the classical sense used throughout this paper.
2. $\left(k_{1}, \cdots, k_{n}\right)$-convex sets in \mathbb{R}^{n}

Throughout in this paper we fix a natural number $n \in \mathbb{N}$ and we always let $\mathbf{k}:=\left(k_{1}, \cdots, k_{n}\right) \in \mathbb{N}^{n}$. A set $S \subset \mathbb{R}^{n}$ is called \mathbf{k}-convex if either $S=\varnothing$ or, whenever $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y} \in S$ for any $\mathbf{x}, \mathbf{y} \in S$ and any $t \in[0,1]$, where we denote $t^{\mathbf{k}} \mathbf{x}:=\left(t^{k_{1}} x_{1}, \cdots, t^{k_{n}} x_{n}\right)$ for $\mathbf{x}:=$ $\left(x_{1}, \cdots, x_{n}\right)$ and $t \geq 0$.

Received November 10, 2015. Accepted December 1, 2015.
2010 Mathematics Subject Classification. 26B25, 26A51.
Key words and phrases. $\left(k_{1}, \cdots, k_{n}\right)$-convex set, $\left(k_{1}, \cdots, k_{n}\right)$-convex function, quasi- $\left(k_{1}, \cdots, k_{n}\right)$-convex function, k-segment, $\left(k_{1}, \cdots, k_{n}\right)$-nonisotropically starlike with respect to the origin.

Example 2.1. The followings are some examples of \mathbf{k}-convex sets:
(a) For $\mathbf{x}^{0}:=\left(x_{1}^{0}, \cdots, x_{n}^{0}\right) \in \mathbb{R}^{n}$ the set $\left\{\mathbf{x} \in \mathbb{R}^{n}: \operatorname{sgn}\left(x_{j}\right)=\right.$ $\left.\operatorname{sgn}\left(x_{j}^{0}\right), j=1, \cdots, n\right\}$ is \mathbf{k}-convex.
(b) If $k_{1} \leq \cdots \leq k_{n}$, then the set $\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{1} \geq \cdots \geq x_{n} \geq 0\right\}$ is k-convex.
(c) For $r_{1}, \cdots, r_{n}>0$ the open (resp. closed) n-polydisk $\prod_{j=1}^{n}\left(-r_{j}, r_{j}\right)$, $\prod_{j=1}^{n}\left[-r_{j}, r_{j}\right]$ are \mathbf{k}-convex.
(d) It follows from the Minkowski inequality that for every $r>0$ the open (resp. closed) n-ball $\left\{\mathbf{x} \in \mathbb{R}^{n}: \sum_{j=1}^{n} x_{j}^{2}<r^{2}\right\},\left\{\mathbf{x} \in \mathbb{R}^{n}\right.$: $\left.\sum_{j=1}^{n} x_{j}^{2} \leq r^{2}\right\}$ are \mathbf{k}-convex.

Example 2.2. Let $1:=(1, \cdots, 1) \in \mathbb{R}^{n}$ and let $k \in \mathbb{N}$.
(a) Obviously, any 1-convex set is convex in the classical sense.
(b) A closed half-space or an open half-space is a k 1-convex set.
(c) A set that is the intersection of a finite number of close half-spaces is called a convex polytope. Since a half-space is a $k 1$-convex set, any convex polytope is a $k 1$-convex set.

We can easily check the following results
Proposition 2.3. (a) If a set $S \subset \mathbb{R}^{n}$ is k-convex, so is \bar{S}.
(b) If two sets $S, T \subset \mathbb{R}^{n}$ are \mathbf{k}-convex, so is $S+T:=\{\mathbf{x}+\mathbf{y}: \mathbf{x} \in$ $S, \mathbf{y} \in T\}$.
(c) The intersection of any number of \mathbf{k}-convex sets is \mathbf{k}-convex.

Remark 2.4. The empty set is \mathbf{k}-convex, but every nonempty finite subset of \mathbb{R}^{n} is not \mathbf{k}-convex. For example, if $x_{j} \neq 0, k_{j} \neq 1$ for some j, then the singleton set $\{\mathbf{x}\}$ is not \mathbf{k}-convex, because

$$
\left(\frac{1}{2}\right)^{\mathbf{k}} \mathbf{x}+\left(\frac{1}{2}\right)^{\mathbf{k}} \mathbf{x}=\left(\frac{1}{2}\right)^{\mathbf{k}-\mathbf{1}} \mathbf{x} \neq \mathbf{x}
$$

In particular, in contrast to Proposition 2.3 (c), a union of \mathbf{k}-convex sets is not \mathbf{k}-convex in general.

Remark 2.5. Since a translated set $\mathbf{x}+S:=\{\mathbf{x}+\mathbf{y}: \mathbf{y} \in S\}$ of a \mathbf{k}-convex set S with $\mathbf{x} \neq \mathbf{0}$ is not \mathbf{k}-convex in general, e.g., consider the set

$$
(1,3) \times \cdots \times(1,3)=21+(-1,1) \times \cdots \times(-1,1)
$$

$$
\left(k_{1}, \cdots, k_{n}\right) \text {-convexity in } \mathbb{R}^{n}
$$

and see Example 5.2. Furthermore, any open n-ball with center $\mathbf{x} \neq \mathbf{0}$ is not \mathbf{k}-convex whenever $\mathbf{k} \neq \mathbf{1}$. In particular, the \mathbf{k}-convexity of sets is in general not translation invariant.

3. $\left(k_{1}, \cdots, k_{n}\right)$-convex functions

Now we introduce the notion of a k-convex function.
Definition 3.1. Let $S \subset \mathbb{R}^{n}$ be a k-convex set. A function $f: S \longrightarrow$ \mathbb{R} is called \mathbf{k}-convex whenever

$$
f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq(1-t) f(\mathbf{x})+t f(\mathbf{y})
$$

for $\mathbf{x}, \mathbf{y} \in S$ and $t \in[0,1]$. If strict inequality holds in the previous inequality whenever $\mathbf{x} \neq \mathbf{y}$ and $0<t<1$, we say that f is strictly \mathbf{k}-convex on S. The epigraph of f is defined as

$$
\operatorname{Epi}(f):=\left\{(\mathbf{x}, a) \in \mathbb{R}^{n} \times \mathbb{R}: \mathbf{x} \in S, f(\mathbf{x}) \leq a\right\}
$$

Remark 3.2. (a) Any linear combination with positive coefficients of \mathbf{k}-convex functions is \mathbf{k}-convex.
(b) If f is a \mathbf{k}-convex function on a \mathbf{k}-convex subset S of \mathbb{R}^{n} and a function $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ is non-decreasing and convex, then $\phi \circ f: S \longrightarrow \mathbb{R}$ is \mathbf{k}-convex.

Example 3.3. The function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, defined by

$$
f(\mathbf{x}):=\sum_{j=1}^{n}\left|x_{j}\right|^{1 / k_{j}} \quad\left(\mathbf{x} \in \mathbb{R}^{n}\right)
$$

is \mathbf{k}-convex, because

$$
\left|(1-t)^{k_{j}} x_{j}+t^{k_{j}} y_{j}\right|^{1 / k_{j}} \leq(1-t)\left|x_{j}\right|^{1 / k_{j}}+t\left|y_{j}\right|^{1 / k_{j}} \quad(j=1, \cdots, n)
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $t \in[0,1]$. In particular, in view of Remark 3.2 (b), there are lots of other \mathbf{k}-convex functions from \mathbb{R}^{n} to \mathbb{R}.

We now present a characterization of \mathbf{k}-convexity for functions
Theorem 3.4. Let $S \subset \mathbb{R}^{n}$ be a \mathbf{k}-convex set. For a function f : $S \longrightarrow \mathbb{R}$, the following statements are equivalent:
(a) f is \mathbf{k}-convex.
(b) $\operatorname{Epi}(f)$ is $(\mathbf{k}, 1)$-convex, where $(\mathbf{k}, 1):=\left(k_{1}, \cdots, k_{n}, 1\right)$.
(c) (Jensen's Inequality) For every $x^{1}, \cdots, x^{m} \in S$ and nonnegative real numbers t_{1}, \cdots, t_{m} with $1=\sum_{i=1}^{m} t_{i}$, we have

$$
\begin{equation*}
f\left(\sum_{i=1}^{m} t_{i}^{\mathbf{k}} \mathbf{x}^{i}\right) \leq \sum_{i=1}^{m} t_{i} f\left(\mathbf{x}^{i}\right) \tag{1}
\end{equation*}
$$

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: Let $(\mathbf{x}, a),(\mathbf{y}, b) \in \operatorname{Epi}(f)$ and let $0 \leq t \leq 1$. Then $f(\mathbf{x}) \leq a, f(\mathbf{y}) \leq b$, and also the ($\mathbf{k}, 1$)-convexity of f implies that

$$
f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq(1-t) f(\mathbf{x})+t f(\mathbf{y}) \leq(1-t) a+t b
$$

But since $(1-t)^{(\mathbf{k}, 1)}(\mathbf{x}, a)+t^{(\mathbf{k}, 1)}(\mathbf{y}, b)=\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y},(1-t) a+t b\right)$, the set $\operatorname{Epi}(f)$ is $(\mathbf{k}, 1)$-convex.
(b) \Longrightarrow (a): Let $\mathbf{x}, \mathbf{y} \in S$ and let $0 \leq t \leq 1$. It is clear that ($\mathbf{x}, f(\mathbf{x})$), $(\mathbf{y}, f(\mathbf{y})) \in \operatorname{Epi}(f)$, and by the $(\mathbf{k}, 1)$-convexity of $\operatorname{Epi}(f)$ one has

$$
\begin{aligned}
& \left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y},(1-t) f(\mathbf{x})+t f(\mathbf{y})\right) \\
& \quad=(1-t)^{(\mathbf{k}, 1)}(\mathbf{x}, f(\mathbf{x}))+t^{(\mathbf{k}, 1)}(\mathbf{y}, f(\mathbf{y})) \in \operatorname{Epi}(f)
\end{aligned}
$$

that is, $f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq(1-t) f(\mathbf{x})+t f(\mathbf{y})$. Thus f is \mathbf{k}-convex.
$(\mathrm{c}) \Longrightarrow(\mathrm{a})$: It is trivial.
(a) $\Longrightarrow(\mathrm{c})$: Let us use mathematical induction on m. The inequality (1) is true for $m=1$. Assume the inequality (1) holds for the integer $m \geq 1$, let $\mathbf{x}^{1}, \cdots, \mathbf{x}^{m+1} \in S$ and let $t_{i} \geq 0(i=1, \cdots, m+1)$ with $1=\sum_{i=1}^{m+1} t_{i}$. At least one of t_{1}, \cdots, t_{m+1} must be less than 1 (otherwise the inequality (1) is trivial). Now we may assume that $t_{m+1}<1$. Let $t:=1-t_{m+1}$ and $s_{i}:=t_{i} / t(i=1, \cdots, m)$. Then $0 \leq t \leq 1, \sum_{i=1}^{m} s_{i}=$ $1, \mathbf{y}:=\sum_{i=1}^{m} s_{i}^{\mathbf{k}} \mathbf{x}^{i} \in S$, and

$$
\mathbf{x}:=\sum_{i=1}^{m+1} t_{i}^{\mathbf{k}} \mathbf{x}^{i}=t^{\mathbf{k}} \mathbf{y}+(1-t)^{\mathbf{k}} \mathbf{x}^{m+1}
$$

But since f is k-convex on $S, f(\mathbf{x}) \leq t f(\mathbf{y})+(1-t) f\left(\mathbf{x}^{m+1}\right)$ and, by our induction hypothesis, $f(\mathbf{y}) \leq \sum_{i=1}^{m} s_{i} f\left(\mathbf{x}^{i}\right)$. Hence, combining the

$$
\left(k_{1}, \cdots, k_{n}\right) \text {-convexity in } \mathbb{R}^{n}
$$

above two inequalities, we get that

$$
\begin{aligned}
f\left(\sum_{i=1}^{m+1} t_{i}^{\mathbf{k}} \mathbf{x}^{i}\right) & \leq t \sum_{i=1}^{m} s_{i} f\left(\mathbf{x}^{i}\right)+(1-t) f\left(\mathbf{x}^{m+1}\right) \\
& \leq \sum_{i=1}^{m} t_{i} f\left(\mathbf{x}^{i}\right)+t_{m+1} f\left(\mathbf{x}^{m+1}\right)=\sum_{i=1}^{m+1} t_{i} f\left(\mathbf{x}^{i}\right)
\end{aligned}
$$

Thus, the inequality (1) is established for $m \rightsquigarrow m+1$, and therefore, by mathematical induction, it holds for any natural number m.

Notice that the infimum taken over the empty set is, by convention, assumed to be $+\infty$.

Theorem 3.5. Let $E \subset \mathbb{R}^{n+1}$ be a $(\mathbf{k}, 1)$-convex set. If a function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ defined by $f(\mathbf{x}):=\inf \{c \in \mathbb{R}:(\mathbf{x}, c) \in E\}$ is \mathbf{k}-convex.

Proof. In view of Theorem 3.4, it suffices to show that the set Epi (f) is $(\mathbf{k}, 1)$-convex. For this, let $(\mathbf{x}, a),(\mathbf{y}, b) \in \operatorname{Epi}(f)$ and let $\epsilon>0$. Since $f(\mathbf{x})<a+\epsilon$ and $f(\mathbf{y})<b+\epsilon$, it follows from the definition of f that there exist $c, d \in \mathbb{R}$ such that $c<a+\epsilon, d<b+\epsilon$, and $(\mathbf{x}, c),(\mathbf{y}, d) \in E$. The ($\mathbf{k}, 1$)-convexity of E implies that for any $t \in[0,1]$ one has

$$
\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y},(1-t) c+t d\right)=(1-t)^{(\mathbf{k}, 1)}(\mathbf{x}, c)+t^{(\mathbf{k}, 1)}(\mathbf{y}, d) \in E
$$

and so $f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq(1-t) c+t d<(1-t) a+t b+\epsilon$. But since ϵ was arbitrary, $f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq(1-t) a+t b$, that is, $(1-t)^{(\mathbf{k}, 1)}(\mathbf{x}, a)+$ $t^{(\mathbf{k}, 1)}(\mathbf{y}, b) \in \operatorname{Epi}(f)$, as desired.

The next result can be easily checked.
Proposition 3.6. Let $S \subset \mathbb{R}^{n}$ be a k-convex set. If $f: S \longrightarrow \mathbb{R}$ is \mathbf{k}-convex, then, to every $c \in \mathbb{R}$ two sets $S_{c}(f):=\{\mathbf{x} \in S: f(\mathbf{x})<c\}$ and $\bar{S}_{c}(f):=\{\mathbf{x} \in S: f(\mathbf{x}) \leq c\}$ are \mathbf{k}-convex.

Remark 3.7. The fact that the converse of the above proposition does not hold in general can be easily seen from the function $x \longmapsto$ $x^{1 /(2 k)}$ from $[0, \infty)$ to \mathbb{R}, where $k \in \mathbb{N}$.

Example 3.8. (cf. [2], p.109) Let S be nonempty and closed. Define

$$
d_{S}(\mathbf{x}):=\min \{\|\mathbf{x}-\mathbf{y}\|: \mathbf{y} \in S\} \quad \text { for any } \mathbf{x} \in \mathbb{R}^{n}
$$

Then the function d_{S} is \mathbf{k}-convex on \mathbb{R}^{n} if and only if S is a \mathbf{k}-convex set.

Proposition 3.9. If $\left\{f_{\alpha}\right\}_{\alpha \in \Lambda}$ is a family of \mathbf{k}-convex functions on a k-convex set $S \subset \mathbb{R}^{n}$, its upper envelope $f: S \longrightarrow \mathbb{R}$, defined by $f(\mathbf{x}):=\sup _{\alpha \in \Lambda} f_{\alpha}(\mathbf{x})$ for $\mathbf{x} \in S$ is also \mathbf{k}-convex.

Proof. Since each f_{α} is k-convex, in virtue of Theorem 3.4, each $\operatorname{Epi}\left(f_{\alpha}\right)$ is $(\mathbf{k}, 1)$-convex. Hence the $(\mathbf{k}, 1)$-convexity of $\operatorname{Epi}(f)$ follows immediately from the fact that $\operatorname{Epi}(f)=\bigcap_{\alpha \in \Lambda} \operatorname{Epi}\left(f_{\alpha}\right)$ and, by Theorem 3.4, the function f is \mathbf{k}-convex.

We finish this section by introducing the notion of quasi-k-convexity.
Definition 3.10. A function f defined on a k-convex set $S \subset \mathbb{R}^{n}$ is called quasi-k-convex whenever $f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq \max \{f(\mathbf{x}), f(\mathbf{y})\}$ for any $\mathbf{x}, \mathbf{y} \in S$ and $t \in[0,1]$.

Proposition 3.11. A function f defined on a k-convex set $S \subset \mathbb{R}^{n}$ is quasi-k-convex if and only if the sub-level set $\bar{S}_{c}(f)$ is \mathbf{k}-convex for every $c \in \mathbb{R}$.

Proof. ($\Longrightarrow)$ Fix $c \in \mathbb{R}$. Let $\mathbf{x}, \mathbf{y} \in \bar{S}_{c}(f)$ and let $t \in[0,1]$. Then the \mathbf{k}-convexity of $S\left(\right.$ resp. f) implies that $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y} \in S$ and

$$
f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq(1-t) f(\mathbf{x})+t f(\mathbf{y}) \leq(1-t) c+t c=c
$$

so $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y} \in \bar{S}_{c}(f)$.
(\Longleftarrow) Let $\mathbf{x}, \mathbf{y} \in S$ and let $t \in[0,1]$. If we put $c:=\max \{f(\mathbf{x}), f(\mathbf{y})\}$, it is clear that $\mathbf{x}, \mathbf{y} \in \bar{S}_{c}(f)$, and so by the k-convexity of $\bar{S}_{c}(f)$ one has $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y} \in \bar{S}_{c}(f)$, i.e., $f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq \max \{f(\mathbf{x}), f(\mathbf{y})\}$.

Corollary 3.12. (i) If f_{1}, \cdots, f_{m} are quasi-k-convex on a k-convex subset S of \mathbb{R}^{n} and $c_{1}, \cdots, c_{m} \geq 0$, then $f:=\max \left\{c_{j} f_{j}: j=1, \cdots, m\right\}$ is a quasi-k-convex function on S.
(ii) If f is a quasi-k-convex function on a k-convex subset S of \mathbb{R}^{n} and $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ is a non-decreasing function, then $\phi \circ f: S \longrightarrow \mathbb{R}$ is quasi-k-convex

The proofs of the above results are trivial and we omit it.

4. Extrema of $\left(k_{1}, \cdots, k_{n}\right)$-convex functions

Proposition 4.1. Let $S \subset \mathbb{R}^{n}$ be compact and \mathbf{k}-convex. If a function $f: S \longrightarrow \mathbb{R}$ is continuous and strictly \mathbf{k}-convex, then there exists a unique $\mathbf{x}^{0} \in S$ such that $f\left(\mathbf{x}^{0}\right) \leq f(\mathbf{x})$ for any $\mathbf{x} \in S$.

Proof. The existence of $\mathbf{x}^{0} \in S$ is guaranteed by the fact that S is compact and f is continuous on S. To show the uniqueness of the point \mathbf{x}^{0}, we assume that there is a $\mathbf{x}^{1} \in S$ with $\mathbf{x}^{1} \neq \mathbf{x}^{0}$ such that $f\left(\mathbf{x}^{1}\right) \leq f(\mathbf{x})$ for any $\mathbf{x} \in S$. For any $t \in(0,1)$, using the strict \mathbf{k} convexity of f,

$$
f\left((1-t)^{\mathbf{k}} \mathbf{x}^{0}+(1-t)^{\mathbf{k}} \mathbf{x}^{1}\right)<(1-t) f\left(\mathbf{x}^{0}\right)+t f\left(\mathbf{x}^{1}\right)
$$

moreover, using the fact that \mathbf{x}^{0} and \mathbf{x}^{1} are minimums, one has

$$
\begin{aligned}
& f\left((1-t)^{\mathbf{k}} \mathbf{x}^{0}+(1-t)^{\mathbf{k}} \mathbf{x}^{1}\right) \\
& \quad<(1-t) f\left((1-t)^{\mathbf{k}} \mathbf{x}^{0}+(1-t)^{\mathbf{k}} \mathbf{x}^{1}\right)+t f\left((1-t)^{\mathbf{k}} \mathbf{x}^{0}+(1-t)^{\mathbf{k}} \mathbf{x}^{1}\right) \\
& \quad=f\left((1-t)^{\mathbf{k}} \mathbf{x}^{0}+(1-t)^{\mathbf{k}} \mathbf{x}^{1}\right)
\end{aligned}
$$

which is a contradiction.

We now present a maximum principle for \mathbf{k}-convex functions as follows.

Theorem 4.2. If f is a \mathbf{k}-convex function on a \mathbf{k}-convex subset S of \mathbb{R}^{n} and attains a global maximum at an interior point of S, then f is constant on S.

Proof. Assume that f is not constant and attains a global maximum at the point $\mathbf{p} \in \operatorname{int} S$. Choose $r>0$ with $\mathbb{B}_{n}(\mathbf{p} ; r):=\left\{\mathbf{u} \in \mathbb{R}^{n}\right.$: $\|\mathbf{u}-\mathbf{p}\|<r\} \subset S$ and $\mathbf{x} \in S$ with $f(\mathbf{x})<f(\mathbf{p})$. For any $0<\epsilon<1$ we put $\mathbf{y}_{\epsilon}:=\left(y_{1}, \cdots, y_{n}\right) \in \mathbb{R}^{n}$, where

$$
y_{j}:=(1+\epsilon)^{k_{j}} p_{j}-\epsilon^{k_{j}} x_{j} \quad \text { for } \quad j=1, \cdots, n
$$

Observe that

$$
\begin{aligned}
\mathbf{y}_{\epsilon}-\mathbf{p} & =\sum_{j=1}^{n}\left\{\left[(1+\epsilon)^{k_{j}}-1\right] p_{j}-\epsilon^{k_{j}} x_{j}\right\} \mathbf{e}_{j} \\
& =\sum_{j=1}^{n}\left[\left\{\begin{array}{c}
k_{j=1}-1 \\
i
\end{array}\binom{k_{j}}{i} \epsilon^{i} p_{j}\right\}+\epsilon^{k_{j}}\left(p_{j}-x_{j}\right)\right] \mathbf{e}_{j}
\end{aligned}
$$

where $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ is the standard basis for \mathbb{R}^{n}, and also

$$
\begin{aligned}
\left\|\mathbf{y}_{\epsilon}-\mathbf{p}\right\| & \leq \sqrt{n} \max _{j=1, \cdots, n}\left[\left\{\sum_{i=1}^{k_{j}-1}\binom{k_{j}}{i} \epsilon^{i}\left|p_{j}\right|\right\}+\epsilon^{k_{j}}\left|p_{j}-x_{j}\right|\right] \\
& \leq \sqrt{n} M \epsilon\|\mathbf{p}\|_{\infty}+\epsilon\|\mathbf{p}-\mathbf{x}\|_{\infty} \leq \epsilon(\sqrt{n} M\|\mathbf{p}\|+\|\mathbf{p}-\mathbf{x}\|)
\end{aligned}
$$

where $M:=\max _{j=1, \cdots, n} \sum_{i=1}^{k_{j}-1}\left(k_{j}\right),\|\mathbf{p}\|_{\infty}:=\max _{j=1, \cdots, n}\left|p_{j}\right|$. Hence, we can choose a sufficiently small $\epsilon \in(0,1)$ so that $\mathbf{y}_{\epsilon} \in \mathbb{B}_{n}(\mathbf{p} ; r)$. On the other hand, for every $j=1, \cdots, n$ one has

$$
p_{j}=\frac{1}{(1+\epsilon)^{k_{j}}}\left(y_{j}+\epsilon^{k_{j}} x_{j}\right)=\left(\frac{1}{1+\epsilon}\right)^{k_{j}} y_{j}+\left(\frac{\epsilon}{1+\epsilon}\right)^{k_{j}} x_{j},
$$

that is, $\mathbf{p}=(1 /(1+\epsilon))^{k} \mathbf{y}_{\epsilon}+(\epsilon /(1+\epsilon))^{k} \mathbf{x}$, which yields a contradiction since

$$
f(\mathbf{p}) \leq \frac{1}{1+\epsilon} f\left(\mathbf{y}_{\epsilon}\right)+\frac{\epsilon}{1+\epsilon} f(\mathbf{x})<\frac{1}{1+\epsilon} f(\mathbf{p})+\frac{\epsilon}{1+\epsilon} f(\mathbf{p})=f(\mathbf{p})
$$

by the \mathbf{k}-convexity of f.
Proposition 4.3. Let f be a \mathbf{k}-convex function on a \mathbf{k}-convex subset S of \mathbb{R}^{n}. Then the set of points, $A_{\min }(f)$, at which f attains its minimum is \mathbf{k}-convex.

Proof. Assume that $A_{\min }(f) \neq \varnothing$. Let m be the minimal value attained by f on S. For any $\mathbf{x}, \mathbf{y} \in A_{\min }(f)$ and any $t \in[0,1]$, one has $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y} \in S$ and

$$
m \leq f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) \leq(1-t) f(\mathbf{x})+t f(\mathbf{y})=(1-t) m+t m=m
$$

and so $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y} \in A_{\min }(f)$. Hence the set $A_{\min }(f)$ is \mathbf{k}-convex.
Proposition 4.4. Let f be a \mathbf{k}-convex function on an open \mathbf{k}-convex subset S of \mathbb{R}^{n}. Then every local minimum of f is a global minimum of f on S.

Proof. Suppose that f attains a local minimum at a point $\mathbf{x}^{0} \in$ S. Then $f(\mathbf{x}) \geq f\left(\mathbf{x}^{0}\right)$ for all \mathbf{x} in a sufficiently small neighborhood $\mathbb{B}_{n}\left(\mathbf{x}^{0} ; \delta\right) \subset S$. Let \mathbf{x} be any point in S. Since $t \longmapsto(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{x}^{0}$ is a continuous function passing through the point \mathbf{x}^{0}, we can find some $t \in(0,1)$ suffficiently close to 1 such that $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{x}^{0} \in \mathbb{B}_{n}\left(\mathbf{x}^{0} ; \delta\right)$, and also $f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{x}^{0}\right) \geq f\left(\mathbf{x}^{0}\right)$. But since f is \mathbf{k}-convex on S, one has $(1-t) f(\mathbf{x})+t f\left(\mathbf{x}^{0}\right) \geq f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{x}^{0}\right)$. Combining the last two inequalities, we get that $f(\mathbf{x}) \geq f\left(\mathbf{x}^{0}\right)$. Hence f attains a global minimum at the point \mathbf{x}^{0}.

Proposition 4.5. Let f be a strictly k-convex function on an open \mathbf{k}-convex subset S of \mathbb{R}^{n}. If f attains its minimum on S, it is attained at a unique point of S.

Proof. Suppose that $A_{\min }(f)$ contains two distinct points $\mathbf{x}, \mathbf{y} \in S$ and put $m:=f(\mathbf{x})=f(\mathbf{y})$. By the strictly \mathbf{k}-convexity of f, one has

$$
m \leq f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right)<(1-t) f(\mathbf{x})+t f(\mathbf{y})=m \quad \text { for } \quad 0<t<1
$$

which is a contradiction.

5. k-segments in \mathbb{R}

Let $k \in \mathbb{N}$. For $x, y \in \mathbb{R}$ with $x \leq y$, the k-segment (determined by x and y) is defined by

$$
[x, y]_{k}:=\left\{(1-t)^{k} x+t^{k} y: 0 \leq t \leq 1\right\}
$$

First we will give some elementary properties of this k-segment.
Lemma 5.1. Let $k \in \mathbb{N}$. Then any k-segment is a closed interval in \mathbb{R}, and $[x, y] \subseteq[x, y]_{k}$, where the equality holds iff $k=1$ or $x y \leq 0$. More explicitly, there exists a point $\Phi_{k}(x, y) \in \mathbb{R}$ such that

$$
[x, y] \subset[x, y]_{k}= \begin{cases}{\left[\Phi_{k}(x, y), y\right] \subset(0, y]} & (y>x>0) \\ {[x, y]} & (x<0<y \text { or } x y=0) \\ {\left[x, \Phi_{k}(x, y)\right] \subset[x, 0)} & (x<y<0)\end{cases}
$$

where

$$
\Phi_{k}(x, y)=\left(\frac{y^{1 /(k-1)}}{x^{1 /(k-1)}+y^{1 /(k-1)}}\right)^{k} x+\left(\frac{x^{1 /(k-1)}}{x^{1 /(k-1)}+y^{1 /(k-1)}}\right)^{k} y
$$

for $y>x>0$ and $\Phi_{k}(x, y)=-\Phi_{k}(-y,-x)$ for $x<y<0$. In particular,

$$
\begin{array}{ll}
0<\Phi_{k}(x, y)<x & (y>x>0) \\
y<\Phi_{k}(x, y)<0 & (x<y<0) \tag{3}
\end{array}
$$

Proof. Define $\phi:[0,1] \longrightarrow \mathbb{R}$ by $\phi(t):=(1-t)^{k} x+t^{k} y, t \in[0,1]$. Then ϕ is a (continuous) polynomial of one variable t connecting $x=$ $\phi(0)$ with $y=\phi(1)$, which gives $[x, y] \subset \phi([0,1])$, and also

$$
\phi^{\prime}(t)=k\left\{t^{k-1} y-(1-t)^{k-1} x\right\} \quad(0 \leq t \leq 1)
$$

Moreover, if $k>1$ then we have:
(i) in case $x y \geq 0, x \neq 0$: one has

$$
\phi^{\prime}(t)=0 \quad \Longleftrightarrow \quad t=\frac{1}{1+\sqrt[k-1]{y / x}}=: t_{0}
$$

and in particular,

- in case $x>0: y>0$ and ϕ is strictly decreasing and increasing on $\left[0, t_{0}\right]$ and $\left[t_{0}, 1\right]$, respectively, and ϕ has the minimum at t_{0}. In particular, $[x, y] \subset[x, y]_{k}=\left[\phi\left(t_{0}\right), y\right] \subset(0, y] ;$
- in case $x<0: y<0$ and ϕ is strictly increasing and decreasing on $\left[0, t_{0}\right]$ and $\left[t_{0}, 1\right]$, respectively, and ϕ has the maximum at t_{0}. In particular, $[x, y] \subset[x, y]_{k}=\left[x, \phi\left(t_{0}\right)\right] \subset[x, 0)$.
(ii) in case $x y \leq 0$ and $x \neq 0: x<0, y>0$, and $\phi^{\prime}(t) \geq 0, t \in[0,1]$, with equality holds iff $t=1, y=0$, which implies that ϕ is strictly increasing on $[0,1]$. In particular, $[x, y]=[x, y]_{k}$.
(iii) in case $x y=0: \phi^{\prime}(t) \geq 0, t \in[0,1]$, with equality holds iff $x=t=$ 0 or $y=t-1=0$, which implies that ϕ is strictly increasing on $[0,1]$. In particular, $[0, y]=[0, y]_{k}$ and $[x, 0]=[x, 0]_{k}$,
as desired.
Example 5.2. Note that $[0,0]_{k}=[0,0]$ and $\left([0,0]_{k}\right)_{k}=[0,0]$. For any $x \geq 0$ one has $[x, x]_{k}=\left[\frac{x}{2^{k-1}}, x\right]$, since by Lemma 5.1

$$
\Phi_{k}(x, x)=\left(\frac{1}{2}\right)^{k} x+\left(\frac{1}{2}\right)^{k} x=\frac{x}{2^{k-1}} \quad(x>0)
$$

In particular, any singleton set with a nonzero real number is never k-convex for $k \in \mathbb{N} \backslash\{1\}$.

Lemma 5.3. Let $k \in \mathbb{N} \backslash\{1\}$. For any $a, b, x, y \in \mathbb{R}$ with $0 \leq a<b$ and $0 \leq x<y$, one has

$$
\begin{equation*}
\Phi_{k}(a, b) \leq \Phi_{k}(x, y) \Longleftrightarrow B Y(X-A)-A X(B-Y) \geq 0 \tag{4}
\end{equation*}
$$

where Φ_{k} is as in Lemma 5.1 and $A:=a^{1 /(k-1)}, B:=b^{1 /(k-1)}, X:=$ $x^{1 /(k-1)}, Y:=y^{1 /(k-1)}$.

Proof. Let $p, q \in \mathbb{R}$ with $0 \leq p<q$. Observe that $\Phi_{k}(0, q)=0$, and in case $p>0$ one has

$$
\begin{aligned}
\Phi_{k}(p, q) & =\left(\frac{Q}{P+Q}\right)^{k} P^{k-1}+\left(\frac{P}{P+Q}\right)^{k} Q^{k-1} \\
& =\left(\frac{P Q}{P+Q}\right)^{k}\left(\frac{1}{P}+\frac{1}{Q}\right) \\
& =\left(\frac{1}{P}+\frac{1}{Q}\right)^{1-k}
\end{aligned}
$$

where $P:=p^{1 /(k-1)}, Q:=q^{1 /(k-1)}$. Hence,

$$
\Phi_{k}(a, b) \leq \Phi_{k}(x, y) \Longleftrightarrow \frac{1}{X}+\frac{1}{Y} \leq \frac{1}{A}+\frac{1}{B}
$$

which implies (4) as desired.
Proposition 5.4. Let $k \in \mathbb{N} \backslash\{1\}$. For $x, y, b \in \mathbb{R}$ with $0 \leq x \leq y \leq b$, we have $[y, b]_{k} \subset[x, b]_{k}$, and $[y, b]_{k} \subset\left([y, b]_{k}\right)_{k}$.

Proof. If we put $X:=x^{1 /(k-1)}, Y:=y^{1 /(k-1)}, B:=b^{1 /(k-1)}$, then $B B(Y-X)-X Y(B-B)=B^{2}(Y-X) \geq 0$, and so the first assertion is true by Lemma 5.3. And the second assertion is also true, because

$$
\Phi_{k}\left(\Phi_{k}(y, b), b\right)<\Phi_{k}(y, b) \quad(0 \leq y<b)
$$

by (2) of Lemma 5.1.
In contrast to the result of Proposition 5.4, the inclusion $[x, y]_{k} \subset$ $[a, b]_{k}$ does not hold for $0<a \leq x<y \leq b$ in general, as follows:

Example 5.5. In the case: $k \geq 2, a:=1, x:=(3 / 2)^{k-1}, y:=$ $2^{k-1}, b>0$. Note that

$$
B Y(X-A)-A X(B-Y)=B \cdot 2 \cdot \frac{1}{2}-1 \cdot \frac{3}{2} \cdot(B-2)=\frac{6-B}{2}
$$

which implies that in that case $\Phi_{k}(a, b) \leq \Phi_{k}(x, y)$ iff $0<b \leq 6^{k-1}$. More generally, if $a:=1, x:=(m+1)^{k-1}, y<\left(1+\frac{1}{m}\right)^{k-1}$ with $0<$ $m<1$, one has $a<x<y<b, Y m<m+1$, and

$$
B Y(X-A)-A X(B-Y)=B(Y m-m-1)+(m+1) Y
$$

which implies that in that case

$$
\Phi_{k}(a, b) \leq \Phi_{k}(x, y) \Longleftrightarrow 0<b \leq\left\{\frac{(m+1) y^{1 /(k-1)}}{m+1-m y^{1 /(k-1)}}\right\}^{k-1}
$$

The following result gives us the concrete form for iterated k-segment.
Proposition 5.6. Let $k \in \mathbb{N} \backslash\{1\}$ and let $x, y \in \mathbb{R}, 0 \leq x \leq y$, where x, y are not all zero. Then we have for any $n \in \mathbb{N}$,

$$
\begin{equation*}
\left[x_{n}, y\right]:=\underbrace{\left(\left(\left([x, y]_{k}\right)_{k}\right) \cdots\right)_{k}}_{n-\text { times }}=\left[\frac{x y}{\left\{n x^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1}}, y\right] \tag{5}
\end{equation*}
$$

In particular, if $x>0$ then $0<x_{n} \longrightarrow 0$ as $n \longrightarrow \infty$.
Proof. We can easily verify that

$$
\begin{equation*}
x_{n}=\Phi_{k}\left(x_{n-1}, y\right)=\frac{x_{n-1} y}{\left\{x_{n-1}^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1}} \tag{6}
\end{equation*}
$$

where $x_{0}:=x$, using mathematical induction and Lemma 5.1. Note that

$$
x_{1}=\frac{x y}{\left\{x^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1}}=\left(\frac{x^{1 /(k-1)} y^{1 /(k-1)}}{x^{1 /(k-1)}+y^{1 /(k-1)}}\right)^{k-1}
$$

Assume that (5) is true for any positive integer n. Observe that

$$
x_{n}=\frac{x y}{\left\{n x^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1}}=\left(\frac{x^{1 /(k-1)} y^{1 /(k-1)}}{n x^{1 /(k-1)}+y^{1 /(k-1)}}\right)^{k-1}
$$

and so, by (6),

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n} y}{\left\{x_{n}^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1}} \\
& =\frac{\frac{x y}{\left\{n x^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1}} y}{\left\{\frac{x^{1 /(k-1)} y^{1 /(k-1)}}{n x^{1 /(k-1)}+y^{1 /(k-1)}}+y^{1 /(k-1)}\right\}^{k-1}} \\
& =\frac{x y^{2}}{\left\{(n+1) x^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1} y} \\
& =\frac{x y}{\left\{(n+1) x^{1 /(k-1)}+y^{1 /(k-1)}\right\}^{k-1}}
\end{aligned}
$$

as desired. Hence by mathematical induction (5) is correct for all positive integers n.

6. Nonisotropically Starlike Sets in \mathbb{R}^{n}

Definition 6.1. Let $n \in \mathbb{N}$ with $n \geq 2$. A set $S \subset \mathbb{R}^{n}$ is said to be \mathbf{k}-nonisotropically starlike with respect to the origin whenever $t^{\mathbf{k}} \mathbf{x} \in S$ for any $\mathbf{x} \in S$ and $t \in[0,1]$.

Remark 6.2. (a) A set $S \subset \mathbb{R}^{n}$ is stralike with respect to the origin if and only if it is 1-nonisotropically starlike with respect to the origin.
(b) Any \mathbf{k}-convex subset of \mathbb{R}^{n} containing the origin is \mathbf{k}-nonisotropically starlike with respect to the origin.
(c) If f is a \mathbf{k}-convex function on a \mathbf{k}-nonisotropically starlike set $S \subset \mathbb{R}^{n}$ with respect to the origin satisfying $f(\mathbf{0}) \leq 0$, then

$$
f\left(t^{\mathbf{k}} \mathbf{x}\right)=f\left(t^{\mathbf{k}} \mathbf{x}+(1-t)^{\mathbf{k}} \mathbf{0}\right) \leq t f(\mathbf{x})+(1-t) f(\mathbf{0}) \leq t f(\mathbf{x})
$$

for any $\mathbf{x} \in S$ and $t \in[0,1]$.

Definition 6.3. A function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is called positively \mathbf{k} homogeneous whenever

$$
f\left(t^{\mathbf{k}} \mathbf{x}\right)=t f(\mathbf{x}) \quad \text { for } \quad \mathbf{x} \in \mathbb{R}^{n} \quad \text { and } \quad t \geq 0
$$

Lemma 6.4. A positively k-homogeneous function $f: \mathbb{R}^{n} \longrightarrow[0, \infty)$ is \mathbf{k}-convex if and only if

$$
\begin{equation*}
f(\mathbf{x}+\mathbf{y}) \leq f(\mathbf{x})+f(\mathbf{y}) \quad \text { for any } \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

Proof. (\Longleftarrow) Let $(\mathbf{x}, a),(\mathbf{y}, b) \in \operatorname{Epi}(f)$. Since $f(\mathbf{x}) \leq a$ and $f(\mathbf{y}) \leq b$, it follows from the subadditivity (7) and the positive k-homogeneity of f that

$$
\begin{aligned}
f\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) & \leq f\left((1-t)^{\mathbf{k}} \mathbf{x}\right)+f\left(t^{\mathbf{k}} \mathbf{y}\right) \\
& =(1-t) f(\mathbf{x})+t f(\mathbf{y}) \leq(1-t) a+t b
\end{aligned}
$$

for every $t \in[0,1]$, so $(1-t)^{(\mathbf{k}, 1)}(\mathbf{x}, a)+t^{(\mathbf{k}, 1)}(\mathbf{y}, b)=\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y},(1-\right.$ $t) a+t b) \in \operatorname{Epi}(f)$. Hence, $\operatorname{Epi}(f)$ is $(\mathbf{k}, 1)$-convex and we conclude that f is a \mathbf{k}-convex function according to Theorem 3.4.
(\Longrightarrow) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and let $\epsilon>0$. Put

$$
\begin{aligned}
\mathbf{x}_{\epsilon}:=\left(\frac{1}{f(\mathbf{x})+\frac{\epsilon}{2}}\right)^{\mathbf{k}} \mathbf{x}, & \mathbf{y}_{\epsilon}:=\left(\frac{1}{f(\mathbf{y})+\frac{\epsilon}{2}}\right)^{\mathbf{k}} \mathbf{y} \\
\alpha:=\frac{f(\mathbf{x})+\frac{\epsilon}{2}}{f(\mathbf{x})+f(\mathbf{y})+\epsilon}, & \beta:=\frac{f(\mathbf{y})+\frac{\epsilon}{2}}{f(\mathbf{x})+f(\mathbf{y})+\epsilon} .
\end{aligned}
$$

Clearly, $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. Observe that

$$
\alpha^{\mathbf{k}} \mathbf{x}_{\epsilon}+\beta^{\mathbf{k}} \mathbf{y}_{\epsilon}=\left(\frac{1}{f(\mathbf{x})+f(\mathbf{y})+\epsilon}\right)^{\mathbf{k}}(\mathbf{x}+\mathbf{y})
$$

By the positive \mathbf{k}-homogeneity and by the \mathbf{k}-convexity of f we get that

$$
\frac{f(\mathbf{x}+\mathbf{y})}{f(\mathbf{x})+f(\mathbf{y})+\epsilon} \leq \alpha f\left(\mathbf{x}_{\epsilon}\right)+\beta f\left(\mathbf{y}_{\epsilon}\right) \leq \alpha \frac{f(\mathbf{x})}{f(\mathbf{x})+\frac{\epsilon}{2}}+\beta \frac{f(\mathbf{y})}{f(\mathbf{y})+\frac{\epsilon}{2}}<1
$$

and so $f(\mathbf{x}+\mathbf{y})<f(\mathbf{x})+f(\mathbf{y})+\epsilon$. But since ϵ was arbitrary, we obtain the required subadditive inequality (7), and the proof is complete.

From now on we assume that $S \subset \mathbb{R}^{n}$ is a k-nonisotropically starlike domain with respect to the origin.

Definition 6.5. We define a functional $h_{\mathbf{k}, S}: \mathbb{R}^{n} \longrightarrow[0,+\infty)$ by

$$
h_{\mathbf{k}, S}(\mathbf{x}):=\inf \left\{t>0:(1 / t)^{\mathbf{k}} \mathbf{x} \in S\right\} \quad \text { for } \quad \mathbf{x} \in \mathbb{R}^{n}
$$

which is called the \mathbf{k}-Minkowski functional of S.

We now recall the following elementary properties of Minkowski functionals, which can be found in [1] and [3].

Proposition 6.6. The following properties hold:
(a) $h_{\mathbf{k}, S}\left(t^{\mathbf{k}} \mathbf{x}\right)=t h_{\mathbf{k}, S}(\mathbf{x})$ for any $t \geq 0$ and $\mathbf{x} \in \mathbb{R}^{n}$.
(b) $S=\left\{\mathbf{x} \in \mathbb{R}^{n}: h_{\mathbf{k}, S}(\mathbf{x})<1\right\}$.
(c) $h_{\mathbf{k}, S}$ is uniquely determined by (a) and (b)
(d) $h_{\mathbf{k}, S}$ is upper semicontinuous on \mathbb{R}^{n}.

Finally, we characterize \mathbf{k}-convex sets in terms of its \mathbf{k}-Minkowski functionals:

Theorem 6.7. The following three properties are equivalent:
(a) S is a k-convex set
(b) $h_{\mathbf{k}, S}$ is subadditive, i.e, it satisfies the triangle inequality.
(c) $h_{\mathbf{k}, S}$ is a \mathbf{k}-convex function

Proof. Since $h_{\mathbf{k}, S}$ is nonnegative and positively k-homogeneous by Proposition 6.6 (a), the equivalence of (b) and (c) is a consequence of Lemma 6.4.
$(\mathrm{b}) \Longrightarrow(\mathrm{a}):$ Let $\mathbf{x}, \mathbf{y} \in S$ and $0 \leq t \leq 1$. Then by (b) and Proposition 6.6 , one has

$$
\begin{aligned}
h_{\mathbf{k}, S}\left((1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y}\right) & \leq h_{\mathbf{k}, S}\left((1-t)^{\mathbf{k}} \mathbf{x}\right)+h_{\mathbf{k}, S}\left(t^{\mathbf{k}} \mathbf{y}\right) \\
& =(1-t) h_{\mathbf{k}, S}(\mathbf{x})+t h_{\mathbf{k}, S}(\mathbf{y})<(1-t)+t=1
\end{aligned}
$$

Hence making use of Proposition 6.6 once more, we have $(1-t)^{\mathbf{k}} \mathbf{x}+t^{\mathbf{k}} \mathbf{y} \in$ S.
$(\mathrm{a}) \Longrightarrow(\mathrm{b}):$ Let $\mathbf{x}, \mathbf{y} \in S$ and let $\epsilon>0$. Put $\mathbf{x}_{\epsilon}, \mathbf{y}_{\epsilon}, \alpha, \beta$ be as in the proof of Lemma 6.4. Clearly, $\mathbf{x}_{\epsilon}, \mathbf{y}_{\epsilon} \in S$ by Proposition 6.6 (a) and (b). Note that $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. So the k-convexity of S implies that

$$
\left(\frac{1}{h_{\mathbf{k}, S}(\mathbf{x})+h_{\mathbf{k}, S}(\mathbf{y})+\epsilon}\right)^{\mathbf{k}}(\mathbf{x}+\mathbf{y})=\alpha^{\mathbf{k}} \mathbf{x}_{\epsilon}+\beta^{\mathbf{k}} \mathbf{y}_{\epsilon} \in S
$$

By using again Proposition 6.6 (a) and (b), one has $h_{\mathbf{k}, S}(\mathbf{x}+\mathbf{y})<$ $h_{\mathbf{k}, S}(\mathbf{x})+h_{\mathbf{k}, S}(\mathbf{y})+\epsilon$, and the desired result follows since ϵ was arbitrary.

References

[1] G. Bharali, Nonisotropically balanced domains, Lempert function estimates, and the spectral Nevanlinna-Pick problem, preprint, 2006.
[2] W. Fleming, Functions of Several Variables, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York/Heidelberg, 1977.
[3] M. Jarnicki \& P. Pflug, Invariant Distances and Metrics in Complex Analysis, 2nd Extended ed., de Gruyter Expositions in Mathematics 9, Walter de Gruyter, 2013.

Sung-Hee Park

Department of Mathematics Education, Jeonju University, Jeonju 560-759, Korea.
E-mail: wshpark@jj.ac.kr

