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(k1, · · · , kn)-CONVEXITY IN Rn

Sung-Hee Park

Abstract. In this paper, we first introduce and study new con-
cepts of (k1, · · · , kn)-convexity and k-segment. Secondly, we shall
discuss some properties of nonisotropically starlike domains in Rn

with respect to the origin.

1. Introduction

In this paper, we introduce new notions of convexity, derived from the
notion of “generalized balanced domain”, can be found in [1] and [3]. We
also study some basic properties of these new notions. Next, we propose
a modified line segment “k-segment” and give its elementary properties.
Finally, we recall the definition of a nonisotropically starlike domain
in Rn with respect to the origin and present some related elementary
results.

We refer to, e.g. [2], for general information about convexity in the
classical sense used throughout this paper.

2. (k1, · · · , kn)-convex sets in Rn

Throughout in this paper we fix a natural number n ∈ N and we
always let k := (k1, · · · , kn) ∈ Nn. A set S ⊂ Rn is called k-convex
if either S = ∅ or, whenever (1 − t)kx + tky ∈ S for any x,y ∈ S
and any t ∈ [0, 1], where we denote tkx := (tk1x1, · · · , tknxn) for x :=
(x1, · · · , xn) and t ≥ 0.
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Example 2.1. The followings are some examples of k-convex sets:

(a) For x0 := (x01, · · · , x0n) ∈ Rn the set {x ∈ Rn : sgn(xj) =
sgn(x0j ), j = 1, · · · , n} is k-convex.

(b) If k1 ≤ · · · ≤ kn, then the set {x ∈ Rn : x1 ≥ · · · ≥ xn ≥ 0} is
k-convex.

(c) For r1, · · · , rn > 0 the open (resp. closed) n-polydisk
∏n

j=1(−rj , rj),∏n
j=1[−rj , rj ] are k-convex.

(d) It follows from the Minkowski inequality that for every r > 0
the open (resp. closed) n-ball {x ∈ Rn :

∑n
j=1 x

2
j < r2}, {x ∈ Rn :∑n

j=1 x
2
j ≤ r2} are k-convex.

Example 2.2. Let 1 := (1, · · · , 1) ∈ Rn and let k ∈ N.
(a) Obviously, any 1-convex set is convex in the classical sense.

(b) A closed half-space or an open half-space is a k1-convex set.

(c) A set that is the intersection of a finite number of close half-spaces
is called a convex polytope. Since a half-space is a k1-convex set, any
convex polytope is a k1-convex set.

We can easily check the following results

Proposition 2.3. (a) If a set S ⊂ Rn is k-convex, so is S.

(b) If two sets S, T ⊂ Rn are k-convex, so is S + T := {x + y : x ∈
S, y ∈ T}.

(c) The intersection of any number of k-convex sets is k-convex.

Remark 2.4. The empty set is k-convex, but every nonempty finite
subset of Rn is not k-convex. For example, if xj 6= 0, kj 6= 1 for some j,
then the singleton set {x} is not k-convex, because

(
1

2

)k

x+

(
1

2

)k

x =

(
1

2

)k−1

x 6= x.

In particular, in contrast to Proposition 2.3 (c), a union of k-convex sets
is not k-convex in general.

Remark 2.5. Since a translated set x + S := {x + y : y ∈ S} of a
k-convex set S with x 6= 0 is not k-convex in general, e.g., consider the
set

(1, 3)× · · · × (1, 3) = 21+ (−1, 1)× · · · × (−1, 1)
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and see Example 5.2. Furthermore, any open n-ball with center x 6= 0
is not k-convex whenever k 6= 1. In particular, the k-convexity of sets
is in general not translation invariant.

3. (k1, · · · , kn)-convex functions

Now we introduce the notion of a k-convex function.

Definition 3.1. Let S ⊂ Rn be a k-convex set. A function f : S −→
R is called k-convex whenever

f((1− t)kx+ tky) ≤ (1− t)f(x) + tf(y)

for x,y ∈ S and t ∈ [0, 1]. If strict inequality holds in the previous
inequality whenever x 6= y and 0 < t < 1, we say that f is strictly
k-convex on S. The epigraph of f is defined as

Epi(f) := {(x, a) ∈ Rn × R : x ∈ S, f(x) ≤ a}.
Remark 3.2. (a) Any linear combination with positive coefficients

of k-convex functions is k-convex.

(b) If f is a k-convex function on a k-convex subset S of Rn and a
function φ : R −→ R is non-decreasing and convex, then φ ◦ f : S −→ R
is k-convex.

Example 3.3. The function f : Rn −→ R, defined by

f(x) :=
n∑

j=1

|xj |1/kj (x ∈ Rn),

is k-convex, because

|(1− t)kjxj + tkjyj |1/kj ≤ (1− t)|xj |1/kj + t|yj |1/kj (j = 1, · · · , n)
for all x,y ∈ Rn and t ∈ [0, 1]. In particular, in view of Remark 3.2 (b),
there are lots of other k-convex functions from Rn to R.

We now present a characterization of k-convexity for functions

Theorem 3.4. Let S ⊂ Rn be a k-convex set. For a function f :
S −→ R, the following statements are equivalent:

(a) f is k-convex.
(b) Epi(f) is (k, 1)-convex, where (k, 1) := (k1, · · · , kn, 1).
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(c) (Jensen’s Inequality) For every x1, · · · , xm ∈ S and nonnegative
real numbers t1, · · · , tm with 1 =

∑m
i=1 ti, we have

(1) f

(
m∑

i=1

tki x
i

)
≤

m∑

i=1

tif(x
i)

Proof. (a)=⇒(b): Let (x, a), (y, b) ∈ Epi(f) and let 0 ≤ t ≤ 1. Then
f(x) ≤ a, f(y) ≤ b, and also the (k, 1)-convexity of f implies that

f((1− t)kx+ tky) ≤ (1− t)f(x) + tf(y) ≤ (1− t)a+ tb.

But since (1− t)(k,1)(x, a)+ t(k,1)(y, b) = ((1− t)kx+ tky, (1− t)a+ tb),
the set Epi(f) is (k, 1)-convex.

(b)=⇒(a): Let x,y ∈ S and let 0 ≤ t ≤ 1. It is clear that (x, f(x)),
(y, f(y)) ∈ Epi(f), and by the (k, 1)-convexity of Epi(f) one has

((1− t)kx+ tky, (1− t)f(x) + tf(y))

= (1− t)(k,1)(x, f(x)) + t(k,1)(y, f(y)) ∈ Epi(f),

that is, f((1− t)kx+ tky) ≤ (1− t)f(x) + tf(y). Thus f is k-convex.

(c)=⇒(a): It is trivial.

(a)=⇒(c): Let us use mathematical induction on m. The inequality
(1) is true for m = 1. Assume the inequality (1) holds for the integer
m ≥ 1, let x1, · · · ,xm+1 ∈ S and let ti ≥ 0 (i = 1, · · · ,m + 1) with

1 =
∑m+1

i=1 ti. At least one of t1, · · · , tm+1 must be less than 1 (otherwise
the inequality (1) is trivial). Now we may assume that tm+1 < 1. Let
t := 1 − tm+1 and si := ti/t (i = 1, · · · ,m). Then 0 ≤ t ≤ 1,

∑m
i=1 si =

1, y :=
∑m

i=1 s
k
i x

i ∈ S, and

x :=

m+1∑

i=1

tki x
i = tky+ (1− t)kxm+1.

But since f is k-convex on S, f(x) ≤ tf(y) + (1 − t)f(xm+1) and, by
our induction hypothesis, f(y) ≤ ∑m

i=1 sif(x
i). Hence, combining the
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above two inequalities, we get that

f

(
m+1∑

i=1

tki x
i

)
≤ t

m∑

i=1

sif(x
i) + (1− t)f(xm+1)

≤
m∑

i=1

tif(x
i) + tm+1f(x

m+1) =
m+1∑

i=1

tif(x
i).

Thus, the inequality (1) is established for m Ã m+1, and therefore, by
mathematical induction, it holds for any natural number m.

Notice that the infimum taken over the empty set is, by convention,
assumed to be +∞.

Theorem 3.5. Let E ⊂ Rn+1 be a (k, 1)-convex set. If a function
f : Rn −→ R defined by f(x) := inf{c ∈ R : (x, c) ∈ E} is k-convex.

Proof. In view of Theorem 3.4, it suffices to show that the set Epi(f)
is (k, 1)-convex. For this, let (x, a), (y, b) ∈ Epi(f) and let ε > 0. Since
f(x) < a + ε and f(y) < b + ε, it follows from the definition of f that
there exist c, d ∈ R such that c < a+ ε, d < b+ ε, and (x, c), (y, d) ∈ E.
The (k, 1)-convexity of E implies that for any t ∈ [0, 1] one has

((1− t)kx+ tky, (1− t)c+ td) = (1− t)(k,1)(x, c) + t(k,1)(y, d) ∈ E

and so f((1− t)kx+ tky) ≤ (1− t)c+ td < (1− t)a+ tb+ ε. But since ε

was arbitrary, f((1−t)kx+tky) ≤ (1−t)a+tb, that is, (1−t)(k,1)(x, a)+

t(k,1)(y, b) ∈ Epi(f), as desired.

The next result can be easily checked.

Proposition 3.6. Let S ⊂ Rn be a k-convex set. If f : S −→ R is
k-convex, then, to every c ∈ R two sets Sc(f) := {x ∈ S : f(x) < c} and
Sc(f) := {x ∈ S : f(x) ≤ c} are k-convex.

Remark 3.7. The fact that the converse of the above proposition
does not hold in general can be easily seen from the function x 7−→
x1/(2k) from [0,∞) to R, where k ∈ N.

Example 3.8. (cf. [2], p.109) Let S be nonempty and closed. Define

dS(x) := min{‖x− y‖ : y ∈ S} for any x ∈ Rn.

Then the function dS is k-convex on Rn if and only if S is a k-convex
set.
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Proposition 3.9. If {fα}α∈Λ is a family of k-convex functions on
a k-convex set S ⊂ Rn, its upper envelope f : S −→ R, defined by
f(x) := supα∈Λ fα(x) for x ∈ S is also k-convex.

Proof. Since each fα is k-convex, in virtue of Theorem 3.4, each
Epi(fα) is (k, 1)-convex. Hence the (k, 1)-convexity of Epi(f) follows
immediately from the fact that Epi(f) =

⋂
α∈Λ Epi(fα) and, by Theo-

rem 3.4, the function f is k-convex.

We finish this section by introducing the notion of quasi-k-convexity.

Definition 3.10. A function f defined on a k-convex set S ⊂ Rn is
called quasi-k-convex whenever f((1 − t)kx + tky) ≤ max{f(x), f(y)}
for any x,y ∈ S and t ∈ [0, 1].

Proposition 3.11. A function f defined on a k-convex set S ⊂ Rn

is quasi-k-convex if and only if the sub-level set Sc(f) is k-convex for
every c ∈ R.

Proof. (=⇒) Fix c ∈ R. Let x,y ∈ Sc(f) and let t ∈ [0, 1]. Then the
k-convexity of S(resp. f) implies that (1− t)kx+ tky ∈ S and

f((1− t)kx+ tky) ≤ (1− t)f(x) + tf(y) ≤ (1− t)c+ tc = c,

so (1− t)kx+ tky ∈ Sc(f).

(⇐=) Let x,y ∈ S and let t ∈ [0, 1]. If we put c := max{f(x), f(y)},
it is clear that x,y ∈ Sc(f), and so by the k-convexity of Sc(f) one has
(1− t)kx+ tky ∈ Sc(f), i.e., f((1− t)kx+ tky) ≤ max{f(x), f(y)}.

Corollary 3.12. (i) If f1, · · · , fm are quasi-k-convex on a k-convex
subset S of Rn and c1, · · · , cm ≥ 0, then f := max{cjfj : j = 1, · · · ,m}
is a quasi-k-convex function on S.

(ii) If f is a quasi-k-convex function on a k-convex subset S of Rn

and φ : R −→ R is a non-decreasing function, then φ ◦ f : S −→ R is
quasi-k-convex

The proofs of the above results are trivial and we omit it.

4. Extrema of (k1, · · · , kn)-convex functions

Proposition 4.1. Let S ⊂ Rn be compact and k-convex. If a func-
tion f : S −→ R is continuous and strictly k-convex, then there exists a
unique x0 ∈ S such that f(x0) ≤ f(x) for any x ∈ S.
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Proof. The existence of x0 ∈ S is guaranteed by the fact that S
is compact and f is continuous on S. To show the uniqueness of the
point x0, we assume that there is a x1 ∈ S with x1 6= x0 such that
f(x1) ≤ f(x) for any x ∈ S. For any t ∈ (0, 1), using the strict k-
convexity of f ,

f((1− t)kx0 + (1− t)kx1) < (1− t)f(x0) + tf(x1);

moreover, using the fact that x0 and x1 are minimums, one has

f((1− t)kx0 + (1− t)kx1)

< (1− t)f((1− t)kx0 + (1− t)kx1) + tf((1− t)kx0 + (1− t)kx1)

= f((1− t)kx0 + (1− t)kx1)

which is a contradiction.

We now present a maximum principle for k-convex functions as fol-
lows.

Theorem 4.2. If f is a k-convex function on a k-convex subset S
of Rn and attains a global maximum at an interior point of S, then f is
constant on S.

Proof. Assume that f is not constant and attains a global maximum
at the point p ∈ intS. Choose r > 0 with Bn(p; r) := {u ∈ Rn :
‖u − p‖ < r} ⊂ S and x ∈ S with f(x) < f(p). For any 0 < ε < 1 we
put yε := (y1, · · · , yn) ∈ Rn, where

yj := (1 + ε)kjpj − εkjxj for j = 1, · · · , n.
Observe that

yε − p =
n∑

j=1

{[
(1 + ε)kj − 1

]
pj − εkjxj

}
ej

=

n∑

j=1







kj−1∑

i=1

(
kj
i

)
εipj



+ εkj (pj − xj)


 ej

where {e1, · · · , en} is the standard basis for Rn, and also

‖yε − p‖ ≤ √
n max
j=1,··· ,n







kj−1∑

i=1

(
kj
i

)
εi|pj |



+ εkj |pj − xj |




≤ √
nMε‖p‖∞ + ε‖p− x‖∞ ≤ ε

(√
nM‖p‖+ ‖p− x‖)
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where M := maxj=1,··· ,n
∑kj−1

i=1

(
kj
i

)
, ‖p‖∞ := maxj=1,··· ,n |pj |. Hence,

we can choose a sufficiently small ε ∈ (0, 1) so that yε ∈ Bn(p; r). On
the other hand, for every j = 1, · · · , n one has

pj =
1

(1 + ε)kj

(
yj + εkjxj

)
=

(
1

1 + ε

)kj

yj +

(
ε

1 + ε

)kj

xj ,

that is, p = (1/(1 + ε))k yε+(ε/(1 + ε))k x, which yields a contradiction
since

f(p) ≤ 1

1 + ε
f(yε) +

ε

1 + ε
f(x) <

1

1 + ε
f(p) +

ε

1 + ε
f(p) = f(p)

by the k-convexity of f .

Proposition 4.3. Let f be a k-convex function on a k-convex subset
S of Rn. Then the set of points, Amin(f), at which f attains its minimum
is k-convex.

Proof. Assume that Amin(f) 6= ∅. Let m be the minimal value at-
tained by f on S. For any x,y ∈ Amin(f) and any t ∈ [0, 1], one has
(1− t)kx+ tky ∈ S and

m ≤ f((1− t)kx+ tky) ≤ (1− t)f(x) + tf(y) = (1− t)m+ tm = m

and so (1−t)kx+tky ∈ Amin(f). Hence the set Amin(f) is k-convex.

Proposition 4.4. Let f be a k-convex function on an open k-convex
subset S of Rn. Then every local minimum of f is a global minimum of
f on S.

Proof. Suppose that f attains a local minimum at a point x0 ∈
S. Then f(x) ≥ f(x0) for all x in a sufficiently small neighborhood
Bn(x

0; δ) ⊂ S. Let x be any point in S. Since t 7−→ (1 − t)kx + tkx0

is a continuous function passing through the point x0, we can find some
t ∈ (0, 1) suffficiently close to 1 such that (1− t)kx + tkx0 ∈ Bn(x

0; δ),
and also f((1 − t)kx + tkx0) ≥ f(x0). But since f is k-convex on S,
one has (1− t)f(x) + tf(x0) ≥ f((1− t)kx+ tkx0). Combining the last
two inequalities, we get that f(x) ≥ f(x0). Hence f attains a global
minimum at the point x0.

Proposition 4.5. Let f be a strictly k-convex function on an open
k-convex subset S of Rn. If f attains its minimum on S, it is attained
at a unique point of S.
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Proof. Suppose that Amin(f) contains two distinct points x,y ∈ S
and put m := f(x) = f(y). By the strictly k-convexity of f , one has

m ≤ f((1− t)kx+ tky) < (1− t)f(x) + tf(y) = m for 0 < t < 1

which is a contradiction.

5. k-segments in R

Let k ∈ N. For x, y ∈ R with x ≤ y, the k-segment (determined by x
and y) is defined by

[x, y]k := {(1− t)kx+ tky : 0 ≤ t ≤ 1}.

First we will give some elementary properties of this k-segment.

Lemma 5.1. Let k ∈ N. Then any k-segment is a closed interval
in R, and [x, y] ⊆ [x, y]k, where the equality holds iff k = 1 or xy ≤ 0.
More explicitly, there exists a point Φk(x, y) ∈ R such that

[x, y] ⊂ [x, y]k =





[Φk(x, y), y] ⊂ (0, y] (y > x > 0)
[x, y] (x < 0 < y or xy = 0)
[x,Φk(x, y)] ⊂ [x, 0) (x < y < 0)

where

Φk(x, y) =

(
y1/(k−1)

x1/(k−1) + y1/(k−1)

)k

x+

(
x1/(k−1)

x1/(k−1) + y1/(k−1)

)k

y

for y > x > 0 and Φk(x, y) = −Φk(−y,−x) for x < y < 0. In particular,

0 < Φk(x, y) < x (y > x > 0),(2)

y < Φk(x, y) < 0 (x < y < 0).(3)

Proof. Define φ : [0, 1] −→ R by φ(t) := (1 − t)kx + tky, t ∈ [0, 1].
Then φ is a (continuous) polynomial of one variable t connecting x =
φ(0) with y = φ(1), which gives [x, y] ⊂ φ([0, 1]), and also

φ′(t) = k{tk−1y − (1− t)k−1x} (0 ≤ t ≤ 1).

Moreover, if k > 1 then we have:

(i) in case xy ≥ 0, x 6= 0: one has

φ′(t) = 0 ⇐⇒ t =
1

1 + k−1
√
y/x

=: t0

and in particular,
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• in case x > 0: y > 0 and φ is strictly decreasing and increasing
on [0, t0] and [t0, 1], respectively, and φ has the minimum at
t0. In particular, [x, y] ⊂ [x, y]k = [φ(t0), y] ⊂ (0, y];

• in case x < 0: y < 0 and φ is strictly increasing and decreasing
on [0, t0] and [t0, 1], respectively, and φ has the maximum at
t0. In particular, [x, y] ⊂ [x, y]k = [x, φ(t0)] ⊂ [x, 0).

(ii) in case xy ≤ 0 and x 6= 0: x < 0, y > 0, and φ′(t) ≥ 0, t ∈ [0, 1],
with equality holds iff t = 1, y = 0, which implies that φ is strictly
increasing on [0, 1]. In particular, [x, y] = [x, y]k.

(iii) in case xy = 0: φ′(t) ≥ 0, t ∈ [0, 1], with equality holds iff x = t =
0 or y = t − 1 = 0, which implies that φ is strictly increasing on
[0, 1]. In particular, [0, y] = [0, y]k and [x, 0] = [x, 0]k,

as desired.

Example 5.2. Note that [0, 0]k = [0, 0] and ([0, 0]k)k = [0, 0]. For
any x ≥ 0 one has [x, x]k =

[
x

2k−1 , x
]
, since by Lemma 5.1

Φk(x, x) =

(
1

2

)k

x+

(
1

2

)k

x =
x

2k−1
(x > 0).

In particular, any singleton set with a nonzero real number is never
k-convex for k ∈ N \ {1}.

Lemma 5.3. Let k ∈ N \ {1}. For any a, b, x, y ∈ R with 0 ≤ a < b
and 0 ≤ x < y, one has

(4) Φk(a, b) ≤ Φk(x, y) ⇐⇒ BY (X −A)−AX(B − Y ) ≥ 0

where Φk is as in Lemma 5.1 and A := a1/(k−1), B := b1/(k−1), X :=
x1/(k−1), Y := y1/(k−1).

Proof. Let p, q ∈ R with 0 ≤ p < q. Observe that Φk(0, q) = 0, and
in case p > 0 one has

Φk(p, q) =

(
Q

P +Q

)k

P k−1 +

(
P

P +Q

)k

Qk−1

=

(
PQ

P +Q

)k ( 1

P
+

1

Q

)

=

(
1

P
+

1

Q

)1−k

where P := p1/(k−1), Q := q1/(k−1). Hence,

Φk(a, b) ≤ Φk(x, y) ⇐⇒ 1

X
+

1

Y
≤ 1

A
+

1

B
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which implies (4) as desired.

Proposition 5.4. Let k ∈ N\{1}. For x, y, b ∈ R with 0 ≤ x ≤ y ≤ b,
we have [y, b]k ⊂ [x, b]k, and [y, b]k ⊂ ([y, b]k)k.

Proof. If we put X := x1/(k−1), Y := y1/(k−1), B := b1/(k−1), then
BB(Y −X)−XY (B −B) = B2(Y −X) ≥ 0, and so the first assertion
is true by Lemma 5.3. And the second assertion is also true, because

Φk(Φk(y, b), b) < Φk(y, b) (0 ≤ y < b)

by (2) of Lemma 5.1.

In contrast to the result of Proposition 5.4, the inclusion [x, y]k ⊂
[a, b]k does not hold for 0 < a ≤ x < y ≤ b in general, as follows:

Example 5.5. In the case: k ≥ 2, a := 1, x := (3/2)k−1, y :=
2k−1, b > 0. Note that

BY (X −A)−AX(B − Y ) = B · 2 · 1
2
− 1 · 3

2
· (B − 2) =

6−B

2

which implies that in that case Φk(a, b) ≤ Φk(x, y) iff 0 < b ≤ 6k−1.
More generally, if a := 1, x := (m + 1)k−1, y < (1 + 1

m)k−1 with 0 <
m < 1, one has a < x < y < b, Y m < m+ 1, and

BY (X −A)−AX(B − Y ) = B(Y m−m− 1) + (m+ 1)Y,

which implies that in that case

Φk(a, b) ≤ Φk(x, y) ⇐⇒ 0 < b ≤
{

(m+ 1)y1/(k−1)

m+ 1−my1/(k−1)

}k−1

.

The following result gives us the concrete form for iterated k-segment.

Proposition 5.6. Let k ∈ N\{1} and let x, y ∈ R, 0 ≤ x ≤ y, where
x, y are not all zero. Then we have for any n ∈ N,

(5) [xn, y] := ((([x, y]k)k) · · · )k︸ ︷︷ ︸
n−times

=

[
xy{

nx1/(k−1) + y1/(k−1)
}k−1

, y

]
.

In particular, if x > 0 then 0 < xn −→ 0 as n −→ ∞.

Proof. We can easily verify that

(6) xn = Φk(xn−1, y) =
xn−1y{

x
1/(k−1)
n−1 + y1/(k−1)

}k−1
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where x0 := x, using mathematical induction and Lemma 5.1. Note that

x1 =
xy{

x1/(k−1) + y1/(k−1)
}k−1

=

(
x1/(k−1)y1/(k−1)

x1/(k−1) + y1/(k−1)

)k−1

.

Assume that (5) is true for any positive integer n. Observe that

xn =
xy{

nx1/(k−1) + y1/(k−1)
}k−1

=

(
x1/(k−1)y1/(k−1)

nx1/(k−1) + y1/(k−1)

)k−1

and so, by (6),

xn+1 =
xny{

x
1/(k−1)
n + y1/(k−1)

}k−1

=

xy

{nx1/(k−1)+y1/(k−1)}k−1 y

{
x1/(k−1)y1/(k−1)

nx1/(k−1)+y1/(k−1) + y1/(k−1)
}k−1

=
xy2{

(n+ 1)x1/(k−1) + y1/(k−1)
}k−1

y

=
xy

{(n+ 1)x1/(k−1) + y1/(k−1)}k−1

as desired. Hence by mathematical induction (5) is correct for all posi-
tive integers n.

6. Nonisotropically Starlike Sets in Rn

Definition 6.1. Let n ∈ N with n ≥ 2. A set S ⊂ Rn is said to be
k-nonisotropically starlike with respect to the origin whenever tkx ∈ S
for any x ∈ S and t ∈ [0, 1].

Remark 6.2. (a) A set S ⊂ Rn is stralike with respect to the origin
if and only if it is 1-nonisotropically starlike with respect to the origin.

(b) Any k-convex subset of Rn containing the origin is k-nonisotropically
starlike with respect to the origin.

(c) If f is a k-convex function on a k-nonisotropically starlike set
S ⊂ Rn with respect to the origin satisfying f(0) ≤ 0, then

f(tkx) = f(tkx+ (1− t)k0) ≤ tf(x) + (1− t)f(0) ≤ tf(x)

for any x ∈ S and t ∈ [0, 1].
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Definition 6.3. A function f : Rn −→ R is called positively k-
homogeneous whenever

f(tkx) = tf(x) for x ∈ Rn and t ≥ 0.

Lemma 6.4. A positively k-homogeneous function f : Rn −→ [0,∞)
is k-convex if and only if

(7) f(x+ y) ≤ f(x) + f(y) for any x,y ∈ Rn.

Proof. (⇐=) Let (x, a), (y, b) ∈ Epi(f). Since f(x) ≤ a and f(y) ≤ b,
it follows from the subadditivity (7) and the positive k-homogeneity of
f that

f((1− t)kx+ tky) ≤ f((1− t)kx) + f(tky)

= (1− t)f(x) + tf(y) ≤ (1− t)a+ tb,

for every t ∈ [0, 1], so (1−t)(k,1)(x, a)+t(k,1)(y, b) = ((1−t)kx+tky, (1−
t)a+ tb) ∈ Epi(f). Hence, Epi(f) is (k, 1)-convex and we conclude that
f is a k-convex function according to Theorem 3.4.

(=⇒) Let x,y ∈ Rn and let ε > 0. Put

xε :=

(
1

f(x) + ε
2

)k

x, yε :=

(
1

f(y) + ε
2

)k

y,

α :=
f(x) + ε

2

f(x) + f(y) + ε
, β :=

f(y) + ε
2

f(x) + f(y) + ε
.

Clearly, α, β ≥ 0 and α+ β = 1. Observe that

αkxε + βkyε =

(
1

f(x) + f(y) + ε

)k

(x+ y).

By the positive k-homogeneity and by the k-convexity of f we get that

f(x+ y)

f(x) + f(y) + ε
≤ αf(xε) + βf(yε) ≤ α

f(x)

f(x) + ε
2

+ β
f(y)

f(y) + ε
2

< 1

and so f(x+y) < f(x)+ f(y)+ ε. But since ε was arbitrary, we obtain
the required subadditive inequality (7), and the proof is complete.

From now on we assume that S ⊂ Rn is a k-nonisotropically starlike
domain with respect to the origin.

Definition 6.5. We define a functional hk,S : Rn −→ [0,+∞) by

hk,S(x) := inf{t > 0 : (1/t)kx ∈ S} for x ∈ Rn,

which is called the k-Minkowski functional of S.
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We now recall the following elementary properties of Minkowski func-
tionals, which can be found in [1] and [3].

Proposition 6.6. The following properties hold:

(a) hk,S(t
kx) = thk,S(x) for any t ≥ 0 and x ∈ Rn.

(b) S = {x ∈ Rn : hk,S(x) < 1}.
(c) hk,S is uniquely determined by (a) and (b)

(d) hk,S is upper semicontinuous on Rn.

Finally, we characterize k-convex sets in terms of its k-Minkowski
functionals:

Theorem 6.7. The following three properties are equivalent:

(a) S is a k-convex set

(b) hk,S is subadditive, i.e, it satisfies the triangle inequality.

(c) hk,S is a k-convex function

Proof. Since hk,S is nonnegative and positively k-homogeneous by
Proposition 6.6 (a), the equivalence of (b) and (c) is a consequence of
Lemma 6.4.

(b)=⇒(a): Let x,y ∈ S and 0 ≤ t ≤ 1. Then by (b) and Proposi-
tion 6.6, one has

hk,S((1− t)kx+ tky) ≤ hk,S((1− t)kx) + hk,S(t
ky)

= (1− t)hk,S(x) + thk,S(y) < (1− t) + t = 1.

Hence making use of Proposition 6.6 once more, we have (1−t)kx+tky ∈
S.

(a)=⇒(b): Let x,y ∈ S and let ε > 0. Put xε,yε, α, β be as in the
proof of Lemma 6.4. Clearly, xε,yε ∈ S by Proposition 6.6 (a) and (b).
Note that α, β ≥ 0 and α+ β = 1. So the k-convexity of S implies that

(
1

hk,S(x) + hk,S(y) + ε

)k

(x+ y) = αkxε + βkyε ∈ S.

By using again Proposition 6.6 (a) and (b), one has hk,S(x + y) <
hk,S(x)+hk,S(y)+ε, and the desired result follows since ε was arbitrary.
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