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A NOTE ON ANALOGUE OF WIENER SPACE WITH

VALUES IN ORLICZ SPACE

Yeon Hee Park

Abstract. In this note we find the upper bound for ρ(un,M) =∫ T

0

∫ |u(t)|n
0

p(s)dsdt and show that F (y) = yn is mM
φ -Bochner inte-

grable on C(OM ) for 0 ≤ t ≤ T when
∫
OM

‖u0‖nMdφ(u0) is finite.

1. Introduction

In this section, we present some notations, definitions, Theorems and
Remarks from [4][9].

(1) A real valued continuous function M(u) is called an N -function

if it is even and satisfies limu→0
M(u)
u = 0 and limu→∞

M(u)
u = ∞, equiv-

alent to it admits of the representation M(u) =
∫ |u|
0 p(t)dt when the

function p(t) is right continuous for t ≥ 0, positive for t > 0 and nonde-
creasing which satisfies the condition p(0) = 0 and limt→∞ p(t) = ∞.

(2) Let p(t) be a function which is positive for t > 0, right contin-
uous for t ≥ 0, nondecreasing, and satisfying conditions p(0) = 0 and
limt→∞ p(t) = ∞. We defined the function q(s)(s ≥ 0) by the equality
q(s) = supp(t)≤s t. Then q(s) is positive for s > 0, right continuous for

s ≥ 0, nondecreasing and satisfies q(0) = 0, lims→∞ q(s) = ∞. The

functions M(u) =
∫ |u|
0 p(t)dt, N(v) =

∫ |v|
0 q(s)ds are called mutually

complementary N -functions.

(3) We say that the N -function M(u) satisfies the ∆2-condition for
large values of u if there exist constants k > 0, u0 ≥ 0 such that
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M(2u) ≤ kM(u),(u ≥ u0) and we say that the N -function M(u) satis-

fies the ∆a-condition if limu→∞
M(u2)
M(u) < ∞.

Remark 1.1. (a) The∆2-condition is equivalent toM(lu) ≤ k(l)M(u),
l > 1 for u ≥ u0.

(b) The N -function M(u) satisfies the ∆2 -condition is equivalent

limu→∞
M(2u)
M(u) < ∞.

(c) If N -function M(u) satisfies the ∆2-condition, then there are two
constants α > 1, c > 0 such that M(u) ≤ c|u|α for large value of u.

(d) If N -function M(u) satisfies the ∆a-condition, M(u) satisfies the
∆2-condition.

Proof. Since limu→∞
M(u2)
M(u) < ∞, there exist u0 > 2 and k ≥ 1 such

that M(u2) ≤ kM(u) for u ≥ u0. If u > 2, then 2u < u2 and M(2u) ≤
M(u2) ≤ kM(u) for u ≥ u0. So M(u) satisfies the ∆2-condition.

(4) For a N -function M and a measurable function u : [0, T ] → R,

let ρ(u,M) =
∫ T
0 M(u(t))dt =

∫ T
0

∫ |u(t)|
0 p(s)dsdt. The space KM =

{u|u : [0, T ] → R, ρ(u,M) < ∞} is called Orlicz class and let KM be
the space of all equivalence classes of functions in KM which are equal
almost everywhere with respect to the Lebesgue measure.

Remark 1.2. KM is linear iff M satisfies the ∆2-condition.

Lemma 1.3. If N -function M(u) satisfies the ∆a-condition, then for
k ≥ 1,

∫ an

0
p(s)ds ≤ kn

∫ a

0
p(s)ds.

Proof. We show by mathematical induction. Let n = 1. Then∫ a
0 p(s)ds ≤ k

∫ a
0 p(s)ds, k ≥ 1. Since M(u) satisfies the ∆a-condition,

limu→∞
M(2u)
M(u) < ∞. So there exist k > 1, u0 > 2 such that M(u2) ≤

kM(u) for u ≥ u0. Therefore
∫ a2

0 p(s)ds = M(a2) ≤ kM(a) = k
∫ a
0 p(s)ds

≤ k2
∫ a
0 p(s)ds for k ≥ 1. Assume that n = m. Then

∫ am

0 p(s)ds ≤
km

∫ a
0 p(s)ds. If n ≥ m+ 1 n=2m,
∫ an

0
p(s)ds =

∫ a2m

0
p(s)ds =

∫ (am)2

0
p(s)ds ≤ k

∫ am

0
p(s)ds

≤ kkm
∫ a

0
p(s)ds = km+1

∫ a

0
p(s)ds ≤ k2m

∫ a

0
p(s)ds.
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If n = 2m+ 1,

∫ an

0
p(s)ds =

∫ a2m+1

0
p(s)ds ≤

∫ a2m+2

0
p(s)ds =

∫ (am+1)2

0
p(s)ds

≤ k

∫ am+1

0
p(s)ds ≤ k

∫ a2m

0
p(s)ds ≤ kk2m

∫ a

0
p(s)ds = k2m+1

∫ a

0
p(s)ds.

Hence for all n,
∫ an

0 p(s)ds ≤ kn
∫ a
0 p(s)ds.

Lemma 1.4. Let N -function M(u) satisfies the ∆a-condition. For
a N -function M(u) and a measurable function u : [0, T ] → R, let

ρ(un,M) =
∫ T
0

∫ |u(t)|n
0 p(s)dsdt. Then

ρ(un,M) ≤ kn
∫ T

0
max{

∫ |u(t)|

0
p(s)ds,

∫ a

0
p(s)ds}dt.

Proof. Let A = {t ∈ [0, T ]|u(t) ≥ a} and
let B = [0, T ]−A = {t ∈ [0, T ]|u(t) < a}.

ρ(un,M) =

∫ T

0

∫ |u(t)|n

0
p(s)dsdt

=

∫

A
(

∫ |u(t)|n

0
p(s)ds)dt+

∫

B
(

∫ |u(t)|n

0
p(s)ds)dt

≤
∫

A
(

∫ |u(t)|n

0
p(s)ds)dt+

∫

B
(

∫ an

0
p(s)ds)dt

≤
∫

A
kn(

∫ |u(t)|

0
p(s)ds)dt+

∫

B
kn(

∫ a

0
p(s)ds)dt

≤ kn
∫ T

0
max{

∫ |u(t)|

0
p(s)ds,

∫ a

0
p(s)ds}dt.

(5) Let M and N be mutually complementary N -functions. We let
DM = {u ∈ KM |u : [0, T ] → R is measurable such that for all v in
KN , (u, v) =

∫
[0,T ] u(t)v(t)dt < ∞}. Let OM be the space of all equiv-

alence classes of functions in DM which are equal almost everywhere
with respect to the Lebegue measure. From Young’s inequality, we have
KM ⊂ OM . For u in OM , ‖u‖M = supρ(v,N)≤1 |(u, v)| is called the Orlicz

norm of u and ‖u‖(M) = inf k, where the infimum is taken over all k > 0
such that ρ(u/k,M) ≤ 1, is called Luxemberg norm of u.
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Remark 1.5. (a) For u in OM ,‖u‖M = 1 + ρ(u,M).

(b) If M satisfies the ∆2-condition, then (OM ,‖u‖M ) is a separable
Banach space and KM = OM .

(c) For u in OM ,‖u‖(M) ≤ ‖u‖M ≤ 2‖u‖(M).

(d) Let M and N be mutually complementary N -functions. Let EM

be the closure of L∞ with respect to the topology generated by the norm
‖ · ‖M and V ∗ be the dual space of the normed vector space V . Then
(EM , ‖ · ‖(M))

∗ = (ON , ‖ · ‖N ) and (EM , ‖ · ‖M )∗ = (ON , ‖ · ‖(N)).

(e) If M satisfies the ∆2-condition, then EM = OM = KM . So if M
satisfies the ∆2-condition, then (OM , ‖ · ‖M ) is reflexive.

(f) Since L∞ ⊂ L2 ⊂ OM , the closure of L2 with respect to the
topology generated by the ‖ · ‖M is OM .

(g) Let M and N be mutually complementary N -functions. For u in
OM and v in ON , |(u, v)| ≤ ρ(u,M) + ρ(v,N), |(u, v)| ≤ ‖u‖M‖v‖(N),
and |(u, v)| ≤ ‖u‖(M)‖v‖N . Hence for u in L2, ‖u‖2 ≤ ‖u‖M ≤ 2‖u‖(M).

(h) If M satisfies the ∆a-condition, then for u in OM , u2 belongs to
OM .

(i) If M satisfies the ∆a-condition, then for u, v in OM , there exists
a constant c such that ‖uv‖M ≤ c‖u‖M‖v‖M .

(6) A subset I of L2 of the form I = {u ∈ L2|P (u) ∈ F} is called a
cylinder set where P is a finite dimensional orthogonal projection of L2

and F is a Borel subset of P (L2). The Gaussian measure on L2 is a set
function of all cylinder sets defined as follows: If I = {u ∈ L2|P (u) ∈ F}
then µ(I) = (2π)−n/2

∫
F e−‖t‖2/2dt where n is the dimension of P (L2).

Then µ is not σ-finite. Suppose {en|n ∈ N} be an orthonormal ba-
sis of L2. Let µe1,··· ,en(F ) = µ{u ∈ L2|((u, e1), (u, e2), · · · , (u, en)) ∈
F}. Then {µe1,··· ,en} is a consistence family of probability measure.
By Kolomogorov’s theorem, there exists a probability measure space
(Ω, ω) and random variables ξn : Ω → R (n ∈ N) such that ω({z ∈
Ω|(ξ1(z), ξ2(z), · · · , ξn(z)) ∈ F}) = µe1,··· ,en(F ). Without loss of gener-
ality, we can put Ω = OM because OM ⊂ L0, the space of all measurable
functions on [0, T ] with the topology of convergence in measure.

Remark 1.6. (a) OM is a closed subset of L0.

(b) For nonzero v in ON and for a real number a,

ω({u ∈ OM |(u, v) < a}) = 1√
2π‖v‖(N)

∫ a

−∞
e−t2/(2‖v‖(N))dt.
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(7) For two Borel measures m1 and m2, we let m1 ∗ m2(E + F ) =
m1 ×m2(E ×F ) for E,F in B(OM ), the set of all Borel subsets of OM .

For λ > 0 and for B in B(OM ), let ωλ(B) = ω(λ−1/2B). Then for two
positive real numbers s and t, ωλ ∗ω = ω√

s2+t2 and ωλ ∗ δ0 = ωλ, where
δ0 is the Dirac measure centered at 0.

2. The analogue of Wiener space with value in Orlicz Space

In this section, letM be anN -function which satisfies the ∆a-condition.
Let M and N be mutually complementary N -functions. Let C(OM ) be
the space of all continuous functions defined on the interval [0, T ] with
values in OM in the norm ‖y‖C(OM ) = sup0≤t≤T ‖y(t)‖M and φ be a

probability Borel measure on OM . Let ~t = (t0, t1, · · · , tn) be given with
0 = t0 < t1 < · · · < tn ≤ T and let T~t : On+1

M → On+1
M be a function

given by

T~t(x0, x1, · · · , xn) = (x0, x0 +
√
t1x1, · · · , x0 +

n∑

j=1

√
tj − tj−1xj).

We define a set function vφ~t on B(On+1
M ) given by

vφ~t (B) =

∫

OM

[

∫

On
M

(χB ◦ T~t)((x0, x1, · · · , xn))d(
n∏

j=1

ω)(x1, · · · , xn)]dφ(x0),

where χB is a characteristic function associated with B. Then vφ~t
is a Borel measure on (On+1

M ,B(On+1
M )). Let J~t : C(OM ) → On+1

M
be a function with J~t(y) = (y(t0), y(t1), · · · , y(tn)). For Borel subsets

B0, B1, · · · , Bn in B(OM ), the subset J−1
~t

(
∏n

j=0Bj) of C(OM ) is called

an interval. Let J be the set all such intervals. Then from [7], J is a semi
algebra. We define a set function Mφ on J by Mφ(J

−1
~t

(
∏n

j=0Bj)) =

vφ~t (
∏n

j=0Bj). Then from [7], Mφ is well defined on J , B(C(OM )) co-

incides with the smallest σ-algebra generated by J and there exists a
unique measure mM

φ on (C(OM ),B(C(OM ))) such that mM
φ (I) = Mφ(I)

for all I in J . This measure space (C(OM ),B(C(OM )),mM
φ ) is called

the analogue of Wiener measure space with values in Orlicz Space.
From the change of variable theorem, we have the following two the-

orems from [9].



510 Yeon Hee Park

Theorem 2.1. If f : On+1
M → R is Borel measurable and F :

C(OM ) → R is a function with F (y) = f(y(t0), y(t1), · · · , y(tn)) then
the following equality holds

∫

C(OM )
F (y)dmM

φ (y) =

∫

C(OM )
f(y(t0), y(t1), · · · , y(tn))dmM

φ (y)

=̇

∫

OM

[

∫

On
M

(f ◦ T~t)((x0, x1, · · · , xn))d(
n∏

j=1

ω)(x1, · · · , xn)]dφ(x0)

where =̇ means that if one side exists then both sides exist and the two
values are equal.

Theorem 2.2. If f : Rn+1 → R is Borel measurable and v is a
nonzero element in ON .

∫

C(OM )
f((v, y(t0)), (v, y(t1)), · · · , (v, y(tn)))dmM

φ (y)

=̇{(2π)n‖v‖(N)

n∏

j=1

√
tj − tj−1}−1/2

∫

R
[

∫

Rn

f(s0, s1, · · · , sn)

exp{− 1

2‖v‖(N)

n∑

j=1

(sj − sj−1)
2

tj − tj−1
}dsndsn−1 · ds1]dφ(s0)

where =̇ means that if one side exists, then both sides exist and the two
values are equal.

Lemma 2.3. LetM satisfies the∆a-condition. For u ∈ OM ,‖un‖M ≤
ρ(un,M) + 1.

Proof. By Remark 1.5 (a) and (h), ‖u‖M = 1+ρ(u,M). Since OM is
linear, un ∈ OM . So we replace u with un. Hence ‖un‖M ≤ ρ(un,M) +
1.

Theorem 2.4. Suppose
∫
OM

‖u0‖nMdφ(u0) is finite. Then for 0 ≤
t ≤ T , F (y) = yn is mM

φ -Bochner integrable on C(OM ).

Proof. Let D be the set of all rational numbers in [0, T ]. Then we
can write D = {tn| n is a natural numbers }. For a natural number m,
let Dm = {t1, t2, · · · , tm}. Then by the monotone convergence theorem
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and by Theorem 2.1, and let A = max{ρ(uk1,M) + 1|k = 0, 1, 2, · · · , n}.
∫

C(OM )
‖yn‖C(OM )dm

M
φ (y) =

∫

C(OM )
sup
t∈D

‖y(t)n‖MdmM
φ (y)

=

∫

C(OM )
lim

m→∞ sup
t∈Dm

‖y(t)n‖MdmM
φ (y)

= lim
m→∞

∫

C(OM )
sup
t∈Dm

‖y(t)n‖MdmM
φ (y)

= lim
m→∞

∫

OM

∫

OM

sup
t∈Dm

‖(u0 +
√
tu1)

n‖Mdω(u1)dφ(u0)

≤ lim
m→∞

∫

OM

∫

OM

n∑

k=0

(
n
k

)
‖(
√
tu1)

k‖M‖un−k
0 ‖Mdω(u1)dφ(u0)

≤
n∑

k=0

(
n
k

)
(
√
T )k

∫

OM

∫

OM

‖uk1‖M‖un−k
0 ‖Mdω(u1)dφ(u0)

≤
n∑

k=0

(
n
k

)
(
√
T )k

∫

OM

[ρ(uk1,M) + 1]dω(u1)

∫

OM

‖u0‖n−k
M dφ(u0)

≤
n∑

k=0

(
n
k

)
(
√
T )k ·Aω(OM )

∫

OM

‖u0‖n−k
M dφ(u0) < ∞.

Since F is weakly measurable and C(OM ) is separable, from [2], F (y) =
yn is mM

φ -Bochner integrable on C(OM ).
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