A NOTE ON ANALOGUE OF WIENER SPACE WITH
 VALUES IN ORLICZ SPACE

Yeon Hee Park

Abstract

In this note we find the upper bound for $\rho\left(u^{n}, M\right)=$ $\int_{0}^{T} \int_{0}^{|u(t)|^{n}} p(s) d s d t$ and show that $F(y)=y^{n}$ is m_{ϕ}^{M}-Bochner integrable on $C\left(\mathcal{O}_{M}\right)$ for $0 \leq t \leq T$ when $\int_{\mathcal{O}_{M}}\left\|u_{0}\right\|_{M}^{n} d \phi\left(u_{0}\right)$ is finite.

1. Introduction

In this section, we present some notations, definitions, Theorems and Remarks from [4][9].
(1) A real valued continuous function $M(u)$ is called an N-function if it is even and satisfies $\lim _{u \rightarrow 0} \frac{M(u)}{u}=0$ and $\lim _{u \rightarrow \infty} \frac{M(u)}{u}=\infty$, equivalent to it admits of the representation $M(u)=\int_{0}^{|u|} p(t) d t$ when the function $p(t)$ is right continuous for $t \geq 0$, positive for $t>0$ and nondecreasing which satisfies the condition $p(0)=0$ and $\lim _{t \rightarrow \infty} p(t)=\infty$.
(2) Let $p(t)$ be a function which is positive for $t>0$, right continuous for $t \geq 0$, nondecreasing, and satisfying conditions $p(0)=0$ and $\lim _{t \rightarrow \infty} p(t)=\infty$. We defined the function $q(s)(s \geq 0)$ by the equality $q(s)=\sup _{p(t) \leq s} t$. Then $q(s)$ is positive for $s>0$, right continuous for $s \geq 0$, nondecreasing and satisfies $q(0)=0, \lim _{s \rightarrow \infty} q(s)=\infty$. The functions $M(u)=\int_{0}^{|u|} p(t) d t, N(v)=\int_{0}^{|v|} q(s) d s$ are called mutually complementary N-functions.
(3) We say that the N-function $M(u)$ satisfies the Δ_{2}-condition for large values of u if there exist constants $k>0, u_{0} \geq 0$ such that

[^0]$M(2 u) \leq k M(u),\left(u \geq u_{0}\right)$ and we say that the N-function $M(u)$ satisfies the Δ_{a}-condition if $\overline{\lim }_{u \rightarrow \infty} \frac{M\left(u^{2}\right)}{M(u)}<\infty$.

Remark 1.1. (a) The Δ_{2}-condition is equivalent to $M(l u) \leq k(l) M(u)$, $l>1$ for $u \geq u_{0}$.
(b) The N-function $M(u)$ satisfies the Δ_{2}-condition is equivalent $\varlimsup_{u \rightarrow \infty} \frac{M(2 u)}{M(u)}<\infty$.
(c) If N-function $M(u)$ satisfies the Δ_{2}-condition, then there are two constants $\alpha>1, c>0$ such that $M(u) \leq c|u|^{\alpha}$ for large value of u.
(d) If N-function $M(u)$ satisfies the Δ_{a}-condition, $M(u)$ satisfies the Δ_{2}-condition.

Proof. Since $\varlimsup_{u \rightarrow \infty} \frac{M\left(u^{2}\right)}{M(u)}<\infty$, there exist $u_{0}>2$ and $k \geq 1$ such that $M\left(u^{2}\right) \leq k M(u)$ for $u \geq u_{0}$. If $u>2$, then $2 u<u^{2}$ and $M(2 u) \leq$ $M\left(u^{2}\right) \leq k M(u)$ for $u \geq u_{0}$. So $M(u)$ satisfies the Δ_{2}-condition.
(4) For a N-function M and a measurable function $u:[0, T] \rightarrow R$, let $\rho(u, M)=\int_{0}^{T} M(u(t)) d t=\int_{0}^{T} \int_{0}^{|u(t)|} p(s) d s d t$. The space $\mathcal{K}_{M}=$ $\{u \mid u:[0, T] \rightarrow R, \rho(u, M)<\infty\}$ is called Orlicz class and let \mathbf{K}_{M} be the space of all equivalence classes of functions in \mathcal{K}_{M} which are equal almost everywhere with respect to the Lebesgue measure.

Remark 1.2. K_{M} is linear iff M satisfies the Δ_{2}-condition.
Lemma 1.3. If N-function $M(u)$ satisfies the Δ_{a}-condition, then for $k \geq 1$,

$$
\int_{0}^{a^{n}} p(s) d s \leq k^{n} \int_{0}^{a} p(s) d s
$$

Proof. We show by mathematical induction. Let $n=1$. Then $\int_{0}^{a} p(s) d s \leq k \int_{0}^{a} p(s) d s, k \geq 1$. Since $M(u)$ satisfies the Δ_{a}-condition, $\overline{\lim }_{u \rightarrow \infty} \frac{M(2 u)}{M(u)}<\infty$. So there exist $k>1, u_{0}>2$ such that $M\left(u^{2}\right) \leq$ $k M(u)$ for $u \geq u_{0}$. Therefore $\int_{0}^{a^{2}} p(s) d s=M\left(a^{2}\right) \leq k M(a)=k \int_{0}^{a} p(s) d s$ $\leq k^{2} \int_{0}^{a} p(s) d s$ for $k \geq 1$. Assume that $n=m$. Then $\int_{0}^{a^{m}} p(s) d s \leq$ $k^{m} \int_{0}^{a} p(s) d s$. If $n \geq m+1 \mathrm{n}=2 \mathrm{~m}$,

$$
\begin{aligned}
& \int_{0}^{a^{n}} p(s) d s=\int_{0}^{a^{2 m}} p(s) d s=\int_{0}^{\left(a^{m}\right)^{2}} p(s) d s \leq k \int_{0}^{a^{m}} p(s) d s \\
& \quad \leq k k^{m} \int_{0}^{a} p(s) d s=k^{m+1} \int_{0}^{a} p(s) d s \leq k^{2 m} \int_{0}^{a} p(s) d s
\end{aligned}
$$

If $n=2 m+1$,

$$
\begin{array}{r}
\int_{0}^{a^{n}} p(s) d s=\int_{0}^{a^{2 m+1}} p(s) d s \leq \int_{0}^{a^{2 m+2}} p(s) d s=\int_{0}^{\left(a^{m+1}\right)^{2}} p(s) d s \\
\leq k \int_{0}^{a^{m+1}} p(s) d s \leq k \int_{0}^{a^{2 m}} p(s) d s \leq k k^{2 m} \int_{0}^{a} p(s) d s=k^{2 m+1} \int_{0}^{a} p(s) d s
\end{array}
$$

Hence for all $n, \int_{0}^{a^{n}} p(s) d s \leq k^{n} \int_{0}^{a} p(s) d s$.
Lemma 1.4. Let N-function $M(u)$ satisfies the Δ_{a}-condition. For a N-function $M(u)$ and a measurable function $u:[0, T] \rightarrow R$, let $\rho\left(u^{n}, M\right)=\int_{0}^{T} \int_{0}^{|u(t)|^{n}} p(s) d s d t$. Then

$$
\rho\left(u^{n}, M\right) \leq k^{n} \int_{0}^{T} \max \left\{\int_{0}^{|u(t)|} p(s) d s, \int_{0}^{a} p(s) d s\right\} d t
$$

Proof. Let $A=\{t \in[0, T] \mid u(t) \geq a\}$ and let $B=[0, T]-A=\{t \in[0, T] \mid u(t)<a\}$.

$$
\begin{aligned}
& \rho\left(u^{n}, M\right)=\int_{0}^{T} \int_{0}^{|u(t)|^{n}} p(s) d s d t \\
& =\int_{A}\left(\int_{0}^{|u(t)|^{n}} p(s) d s\right) d t+\int_{B}\left(\int_{0}^{|u(t)|^{n}} p(s) d s\right) d t \\
& \leq \int_{A}\left(\int_{0}^{|u(t)|^{n}} p(s) d s\right) d t+\int_{B}\left(\int_{0}^{a^{n}} p(s) d s\right) d t \\
& \leq \int_{A} k^{n}\left(\int_{0}^{|u(t)|} p(s) d s\right) d t+\int_{B} k^{n}\left(\int_{0}^{a} p(s) d s\right) d t \\
& \leq k^{n} \int_{0}^{T} \max \left\{\int_{0}^{|u(t)|} p(s) d s, \int_{0}^{a} p(s) d s\right\} d t
\end{aligned}
$$

(5) Let M and N be mutually complementary N-functions. We let $\mathcal{D}_{M}=\left\{u \in \mathbf{K}_{M} \mid u:[0, T] \rightarrow R\right.$ is measurable such that for all v in $\left.\mathbf{K}_{N},(u, v)=\int_{[0, T]} u(t) v(t) d t<\infty\right\}$. Let \mathcal{O}_{M} be the space of all equivalence classes of functions in \mathcal{D}_{M} which are equal almost everywhere with respect to the Lebegue measure. From Young's inequality, we have $\mathbf{K}_{M} \subset \mathcal{O}_{M}$. For u in $\mathcal{O}_{M},\|u\|_{M}=\sup _{\rho(v, N) \leq 1}|(u, v)|$ is called the Orlicz norm of u and $\|u\|_{(M)}=\inf k$, where the infimum is taken over all $k>0$ such that $\rho(u / k, M) \leq 1$, is called Luxemberg norm of u.

Remark 1.5. (a) For u in $\mathcal{O}_{M},\|u\|_{M}=1+\rho(u, M)$.
(b) If M satisfies the Δ_{2}-condition, then $\left(\mathcal{O}_{M},\|u\|_{M}\right)$ is a separable Banach space and $\mathbf{K}_{M}=\mathcal{O}_{M}$.
(c) For u in $\mathcal{O}_{M},\|u\|_{(M)} \leq\|u\|_{M} \leq 2\|u\|_{(M)}$.
(d) Let M and N be mutually complementary N-functions. Let E_{M} be the closure of L_{∞} with respect to the topology generated by the norm $\|\cdot\|_{M}$ and V^{*} be the dual space of the normed vector space V. Then $\left(E_{M},\|\cdot\|_{(M)}\right)^{*}=\left(\mathcal{O}_{N},\|\cdot\|_{N}\right)$ and $\left(E_{M},\|\cdot\|_{M}\right)^{*}=\left(\mathcal{O}_{N},\|\cdot\|_{(N)}\right)$.
(e) If M satisfies the Δ_{2}-condition, then $E_{M}=\mathcal{O}_{M}=\mathbf{K}_{M}$. So if M satisfies the Δ_{2}-condition, then $\left(\mathcal{O}_{M},\|\cdot\|_{M}\right)$ is reflexive.
(f) Since $L_{\infty} \subset L_{2} \subset \mathcal{O}_{M}$, the closure of L_{2} with respect to the topology generated by the $\|\cdot\|_{M}$ is \mathcal{O}_{M}.
(g) Let M and N be mutually complementary N-functions. For u in \mathcal{O}_{M} and v in $\mathcal{O}_{N},|(u, v)| \leq \rho(u, M)+\rho(v, N),|(u, v)| \leq\|u\|_{M}\|v\|_{(N)}$, and $|(u, v)| \leq\|u\|_{(M)}\|v\|_{N}$. Hence for u in $L_{2},\|u\|_{2} \leq\|u\|_{M} \leq 2\|u\|_{(M)}$.
(h) If M satisfies the Δ_{a}-condition, then for u in \mathcal{O}_{M}, u^{2} belongs to \mathcal{O}_{M}.
(i) If M satisfies the Δ_{a}-condition, then for u, v in \mathcal{O}_{M}, there exists a constant c such that $\|u v\|_{M} \leq c\|u\|_{M}\|v\|_{M}$.
(6) A subset I of L_{2} of the form $I=\left\{u \in L_{2} \mid P(u) \in F\right\}$ is called a cylinder set where P is a finite dimensional orthogonal projection of L_{2} and F is a Borel subset of $P\left(L_{2}\right)$. The Gaussian measure on L_{2} is a set function of all cylinder sets defined as follows: If $I=\left\{u \in L_{2} \mid P(u) \in F\right\}$ then $\mu(I)=(2 \pi)^{-n / 2} \int_{F} e^{-\|t\|^{2} / 2} d t$ where n is the dimension of $P\left(L_{2}\right)$. Then μ is not σ-finite. Suppose $\left\{e_{n} \mid n \in N\right\}$ be an orthonormal basis of L_{2}. Let $\mu_{e_{1}, \cdots, e_{n}}(F)=\mu\left\{u \in L_{2} \mid\left(\left(u, e_{1}\right),\left(u, e_{2}\right), \cdots,\left(u, e_{n}\right)\right) \in\right.$ $F\}$. Then $\left\{\mu_{e_{1}, \cdots, e_{n}}\right\}$ is a consistence family of probability measure. By Kolomogorov's theorem, there exists a probability measure space (Ω, ω) and random variables $\xi_{n}: \Omega \rightarrow R(n \in N)$ such that $\omega(\{z \in$ $\left.\left.\Omega \mid\left(\xi_{1}(z), \xi_{2}(z), \cdots, \xi_{n}(z)\right) \in F\right\}\right)=\mu_{e_{1}, \cdots, e_{n}}(F)$. Without loss of generality, we can put $\Omega=\mathcal{O}_{M}$ because $\mathcal{O}_{M} \subset L_{0}$, the space of all measurable functions on $[0, T]$ with the topology of convergence in measure.

Remark 1.6. (a) \mathcal{O}_{M} is a closed subset of L_{0}.
(b) For nonzero v in \mathcal{O}_{N} and for a real number a,

$$
\omega\left(\left\{u \in \mathcal{O}_{M} \mid(u, v)<a\right\}\right)=\frac{1}{\sqrt{2 \pi\|v\|_{(N)}}} \int_{-\infty}^{a} e^{-t^{2} /\left(2\|v\|_{(N)}\right)} d t .
$$

(7) For two Borel measures m_{1} and m_{2}, we let $m_{1} * m_{2}(E+F)=$ $m_{1} \times m_{2}(E \times F)$ for E, F in $\mathcal{B}\left(\mathcal{O}_{M}\right)$, the set of all Borel subsets of \mathcal{O}_{M}. For $\lambda>0$ and for B in $\mathcal{B}\left(\mathcal{O}_{M}\right)$, let $\omega_{\lambda}(B)=\omega\left(\lambda^{-1 / 2} B\right)$. Then for two positive real numbers s and $t, \omega_{\lambda} * \omega=\omega_{\sqrt{s^{2}+t^{2}}}$ and $\omega_{\lambda} * \delta_{0}=\omega_{\lambda}$, where δ_{0} is the Dirac measure centered at 0 .

2. The analogue of Wiener space with value in Orlicz Space

In this section, let M be an N-function which satisfies the Δ_{a}-condition. Let M and N be mutually complementary N-functions. Let $C\left(\mathcal{O}_{M}\right)$ be the space of all continuous functions defined on the interval $[0, T]$ with values in \mathcal{O}_{M} in the norm $\|y\|_{C\left(\mathcal{O}_{M}\right)}=\sup _{0 \leq t \leq T}\|y(t)\|_{M}$ and ϕ be a probability Borel measure on \mathcal{O}_{M}. Let $\vec{t}=\left(t_{0}, t_{1}, \cdots, t_{n}\right)$ be given with $0=t_{0}<t_{1}<\cdots<t_{n} \leq T$ and let $T_{\vec{t}}: \mathcal{O}_{M}^{n+1} \rightarrow \mathcal{O}_{M}^{n+1}$ be a function given by

$$
T_{\vec{t}}\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\left(x_{0}, x_{0}+\sqrt{t_{1}} x_{1}, \cdots, x_{0}+\sum_{j=1}^{n} \sqrt{t_{j}-t_{j-1}} x_{j}\right)
$$

We define a set function $v_{\vec{t}}^{\phi}$ on $\mathcal{B}\left(\mathcal{O}_{M}^{n+1}\right)$ given by
$v_{\vec{t}}^{\phi}(B)=\int_{\mathcal{O}_{M}}\left[\int_{\mathcal{O}_{M}^{n}}\left(\chi_{B} \circ T_{\vec{t}}\right)\left(\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right) d\left(\prod_{j=1}^{n} \omega\right)\left(x_{1}, \cdots, x_{n}\right)\right] d \phi\left(x_{0}\right)$,
where χ_{B} is a characteristic function associated with B. Then $v_{\vec{t}}^{\phi}$ is a Borel measure on $\left(\mathcal{O}_{M}^{n+1}, \mathcal{B}\left(\mathcal{O}_{M}^{n+1}\right)\right)$. Let $J_{\vec{t}}: C\left(\mathcal{O}_{M}\right) \rightarrow \mathcal{O}_{M}^{n+1}$ be a function with $J_{\vec{t}}(y)=\left(y\left(t_{0}\right), y\left(t_{1}\right), \cdots, y\left(t_{n}\right)\right)$. For Borel subsets $B_{0}, B_{1}, \cdots, B_{n}$ in $\mathcal{B}\left(\mathcal{O}_{M}\right)$, the subset $J_{\vec{t}}^{-1}\left(\prod_{j=0}^{n} B_{j}\right)$ of $C\left(\mathcal{O}_{M}\right)$ is called an interval. Let \mathcal{J} be the set all such intervals. Then from [7], \mathcal{J} is a semi algebra. We define a set function M_{ϕ} on \mathcal{J} by $M_{\phi}\left(J_{\vec{t}}^{-1}\left(\prod_{j=0}^{n} B_{j}\right)\right)=$ $v_{\vec{t}}^{\phi}\left(\prod_{j=0}^{n} B_{j}\right)$. Then from [7], M_{ϕ} is well defined on $\mathcal{J}, \mathcal{B}\left(C\left(\mathcal{O}_{M}\right)\right)$ coincides with the smallest σ-algebra generated by \mathcal{J} and there exists a unique measure m_{ϕ}^{M} on $\left(C\left(\mathcal{O}_{M}\right), \mathcal{B}\left(C\left(\mathcal{O}_{M}\right)\right)\right)$ such that $m_{\phi}^{M}(I)=M_{\phi}(I)$ for all I in \mathcal{J}. This measure space $\left(C\left(\mathcal{O}_{M}\right), \mathcal{B}\left(C\left(\mathcal{O}_{M}\right)\right), m_{\phi}^{M}\right)$ is called the analogue of Wiener measure space with values in Orlicz Space.

From the change of variable theorem, we have the following two theorems from [9].

Theorem 2.1. If $f: \mathcal{O}_{M}^{n+1} \rightarrow R$ is Borel measurable and F : $C\left(\mathcal{O}_{M}\right) \rightarrow R$ is a function with $F(y)=f\left(y\left(t_{0}\right), y\left(t_{1}\right), \cdots, y\left(t_{n}\right)\right)$ then the following equality holds

$$
\begin{aligned}
& \int_{C\left(\mathcal{O}_{M}\right)} F(y) d m_{\phi}^{M}(y)=\int_{C\left(\mathcal{O}_{M}\right)} f\left(y\left(t_{0}\right), y\left(t_{1}\right), \cdots, y\left(t_{n}\right)\right) d m_{\phi}^{M}(y) \\
& \doteq \int_{\mathcal{O}_{M}}\left[\int_{\mathcal{O}_{M}^{n}}\left(f \circ T_{\vec{t}}\right)\left(\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right) d\left(\prod_{j=1}^{n} \omega\right)\left(x_{1}, \cdots, x_{n}\right)\right] d \phi\left(x_{0}\right)
\end{aligned}
$$

where \doteq means that if one side exists then both sides exist and the two values are equal.

Theorem 2.2. If $f: R^{n+1} \rightarrow R$ is Borel measurable and v is a nonzero element in \mathcal{O}_{N}.

$$
\begin{aligned}
& \int_{C\left(\mathcal{O}_{M}\right)} f\left(\left(v, y\left(t_{0}\right)\right),\left(v, y\left(t_{1}\right)\right), \cdots,\left(v, y\left(t_{n}\right)\right)\right) d m_{\phi}^{M}(y) \\
& \doteq\left\{(2 \pi)^{n}\|v\|_{(N)} \prod_{j=1}^{n} \sqrt{t_{j}-t_{j-1}}\right\}^{-1 / 2} \int_{R}\left[\int_{R^{n}} f\left(s_{0}, s_{1}, \cdots, s_{n}\right)\right. \\
& \left.\exp \left\{-\frac{1}{2\|v\|_{(N)}} \sum_{j=1}^{n} \frac{\left(s_{j}-s_{j-1}\right)^{2}}{t_{j}-t_{j-1}}\right\} d s_{n} d s_{n-1} \cdot d s_{1}\right] d \phi\left(s_{0}\right)
\end{aligned}
$$

where \doteq means that if one side exists, then both sides exist and the two values are equal.

Lemma 2.3. Let M satisfies the Δ_{a}-condition. For $u \in \mathcal{O}_{M},\left\|u^{n}\right\|_{M} \leq$ $\rho\left(u^{n}, M\right)+1$.

Proof. By Remark 1.5 (a) and (h), $\|u\|_{M}=1+\rho(u, M)$. Since \mathcal{O}_{M} is linear, $u^{n} \in \mathcal{O}_{M}$. So we replace u with u^{n}. Hence $\left\|u^{n}\right\|_{M} \leq \rho\left(u^{n}, M\right)+$ 1.

Theorem 2.4. Suppose $\int_{\mathcal{O}_{M}}\left\|u_{0}\right\|_{M}^{n} d \phi\left(u_{0}\right)$ is finite. Then for $0 \leq$ $t \leq T, F(y)=y^{n}$ is m_{ϕ}^{M}-Bochner integrable on $C\left(\mathcal{O}_{M}\right)$.

Proof. Let D be the set of all rational numbers in $[0, T]$. Then we can write $D=\left\{t_{n} \mid \mathrm{n}\right.$ is a natural numbers $\}$. For a natural number m, let $D_{m}=\left\{t_{1}, t_{2}, \cdots, t_{m}\right\}$. Then by the monotone convergence theorem
and by Theorem 2.1, and let $A=\max \left\{\rho\left(u_{1}^{k}, M\right)+1 \mid k=0,1,2, \cdots, n\right\}$.

$$
\begin{aligned}
& \int_{C\left(\mathcal{O}_{M}\right)}\left\|y^{n}\right\|_{C\left(\mathcal{O}_{M}\right)} d m_{\phi}^{M}(y)=\int_{C\left(\mathcal{O}_{M}\right)} \sup _{t \in D}\left\|y(t)^{n}\right\|_{M} d m_{\phi}^{M}(y) \\
& =\int_{C\left(\mathcal{O}_{M}\right)} \lim _{m \rightarrow \infty} \sup _{t \in D_{m}}\left\|y(t)^{n}\right\|_{M} d m_{\phi}^{M}(y) \\
& =\lim _{m \rightarrow \infty} \int_{C\left(\mathcal{O}_{M}\right.} \sup _{t \in D_{m}}\left\|y(t)^{n}\right\|_{M} d m_{\phi}^{M}(y) \\
& =\lim _{m \rightarrow \infty} \int_{\mathcal{O}_{M}} \int_{\mathcal{O}_{M}} \sup _{t \in D_{m}}\left\|\left(u_{0}+\sqrt{t} u_{1}\right)^{n}\right\|_{M} d \omega\left(u_{1}\right) d \phi\left(u_{0}\right) \\
& \leq \lim _{m \rightarrow \infty} \int_{\mathcal{O}_{M}} \int_{\mathcal{O}_{M}} \sum_{k=0}^{n}\binom{n}{k}\left\|\left(\sqrt{t} u_{1}\right)^{k}\right\|_{M}\left\|u_{0}^{n-k}\right\|_{M} d \omega\left(u_{1}\right) d \phi\left(u_{0}\right) \\
& \leq \sum_{k=0}^{n}\binom{n}{k}(\sqrt{T})^{k} \int_{\mathcal{O}_{M}} \int_{\mathcal{O}_{M}}\left\|u_{1}^{k}\right\|_{M}\left\|u_{0}^{n-k}\right\|_{M} d \omega\left(u_{1}\right) d \phi\left(u_{0}\right) \\
& \leq \sum_{k=0}^{n}\binom{n}{k}(\sqrt{T})^{k} \int_{\mathcal{O}_{M}}\left[\rho\left(u_{1}^{k}, M\right)+1\right] d \omega\left(u_{1}\right) \int_{\mathcal{O}_{M}}\left\|u_{0}\right\|_{M}^{n-k} d \phi\left(u_{0}\right) \\
& \leq \sum_{k=0}^{n}\binom{n}{k}(\sqrt{T})^{k} \cdot A \omega\left(\mathcal{O}_{M}\right) \int_{\mathcal{O}_{M}}\left\|u_{0}\right\|_{M}^{n-k} d \phi\left(u_{0}\right)<\infty .
\end{aligned}
$$

Since F is weakly measurable and $C\left(\mathcal{O}_{M}\right)$ is separable, from [2], $F(y)=$ y^{n} is m_{ϕ}^{M}-Bochner integrable on $C\left(\mathcal{O}_{M}\right)$.

References

[1] Abdallah Hakawati, The Multiplier Algebra of Orlicz Spaces, An-Naha Univ.J.Res. 12 (1998), 1-6.
[2] J. Diestel and J.J. Uhl Jr., Vector Measure, With a foreword by B.J. Pettis. Mathematical Surveys, Amer. Math. Soc. 15 Providence, R.I., (1977).
[3] T. Jurlewicz, Law of the Iterated Logarithm for Wiener Processes with Values in Orlicz Spaces, Probability and Mathematical Statistics 7 (1986), 159-167.
[4] M.A. Kransnoselskii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces, P. Nororodhoff, Ltd. Groningen. (1961).
[5] A. Lawniczak, Gaussian Measures on Orlicz Spaces and Abstract Wiener Spaces, Lecture Notes in Math 939 (1982), 81-97.
[6] K.S. Ryu, The Wiener Integral over Paths in Abstract Wiener Spaces, J. Korean. Math. Soc. 29 (1992), 317-331.
[7] K.S. Ryu, Integration with respect to Analogue of Wiener Measure over Paths in Abstract Wiener Spaces and Applications, Bull. Korean Math. Soc. 47 (2010), 131-149.
[8] K.S. Ryu and M.K. Im, A measure Valued Analogue of Wiener Measure and the Measure-Valued Feynman Kac Formula, Tran.Amer. Math. Soc. 354 (2002), 4921-4951.
[9] K.S. Ryu, The Analogue of Wiener Space with Values in Orlicz Space, Chungcheong Math. Soc. 27 No. 4 (2014), 689-695.

Yeon Hee Park
Department of Mathematics Education and Institute of Pure and Applied Mathematics, Chonbuk National University, Chonju, Chonbuk 54896, Korea.
E-mail: yhpark@jbnu.ac.kr

[^0]: Received October 23, 2015. Accepted December 1, 2015.
 2010 Mathematics Subject Classification. 28C20.
 Key words and phrases. analogue of Wiener measure space. Orlicz space.

