A NOTE ON ANALOGUE OF WIENER SPACE WITH VALUES IN ORLICZ SPACE

YEON HEE PARK

Abstract. In this note we find the upper bound for $\rho(u^n, M) = \int_0^T \int_0^{|u(t)|^n} p(s) ds dt$ and show that $F(y) = y^n$ is m_ϕ^M -Bochner integrable on $C(\mathcal{O}_M)$ for $0 \le t \le T$ when $\int_{\mathcal{O}_M} \|u_0\|_M^n d\phi(u_0)$ is finite.

1. Introduction

In this section, we present some notations, definitions, Theorems and Remarks from [4][9].

- (1) A real valued continuous function M(u) is called an N-function if it is even and satisfies $\lim_{u\to 0}\frac{M(u)}{u}=0$ and $\lim_{u\to \infty}\frac{M(u)}{u}=\infty$, equivalent to it admits of the representation $M(u)=\int_0^{|u|}p(t)dt$ when the function p(t) is right continuous for $t\geq 0$, positive for t>0 and nondecreasing which satisfies the condition p(0)=0 and $\lim_{t\to \infty}p(t)=\infty$.
- (2) Let p(t) be a function which is positive for t>0, right continuous for $t\geq 0$, nondecreasing, and satisfying conditions p(0)=0 and $\lim_{t\to\infty}p(t)=\infty$. We defined the function $q(s)(s\geq 0)$ by the equality $q(s)=\sup_{p(t)\leq s}t$. Then q(s) is positive for s>0, right continuous for $s\geq 0$, nondecreasing and satisfies q(0)=0, $\lim_{s\to\infty}q(s)=\infty$. The functions $M(u)=\int_0^{|u|}p(t)dt,\ N(v)=\int_0^{|v|}q(s)ds$ are called mutually complementary N-functions.
- (3) We say that the N-function M(u) satisfies the Δ_2 -condition for large values of u if there exist constants $k > 0, u_0 \geq 0$ such that

Received October 23, 2015. Accepted December 1, 2015.

²⁰¹⁰ Mathematics Subject Classification. 28C20.

Key words and phrases. analogue of Wiener measure space. Orlicz space.

 $M(2u) \leq kM(u), (u \geq u_0)$ and we say that the N-function M(u) satisfies the Δ_a -condition if $\overline{\lim}_{u\to\infty} \frac{M(u^2)}{M(u)} < \infty$.

Remark 1.1. (a) The Δ_2 -condition is equivalent to $M(lu) \leq k(l)M(u)$, l > 1 for $u \geq u_0$.

- (b) The N-function M(u) satisfies the Δ_2 -condition is equivalent $\overline{\lim}_{u\to\infty}\frac{M(2u)}{M(u)}<\infty$.
- (c) If N-function M(u) satisfies the Δ_2 -condition, then there are two constants $\alpha > 1$, c > 0 such that $M(u) \le c|u|^{\alpha}$ for large value of u.
- (d) If N-function M(u) satisfies the Δ_a -condition, M(u) satisfies the Δ_2 -condition.

Proof. Since $\overline{\lim}_{u\to\infty} \frac{M(u^2)}{M(u)} < \infty$, there exist $u_0 > 2$ and $k \ge 1$ such that $M(u^2) \le kM(u)$ for $u \ge u_0$. If u > 2, then $2u < u^2$ and $M(2u) \le M(u^2) \le kM(u)$ for $u \ge u_0$. So M(u) satisfies the Δ_2 -condition. \square

(4) For a N-function M and a measurable function $u:[0,T]\to R$, let $\rho(u,M)=\int_0^T M(u(t))dt=\int_0^T \int_0^{|u(t)|}p(s)dsdt$. The space $\mathcal{K}_M=\{u|u:[0,T]\to R,\rho(u,M)<\infty\}$ is called Orlicz class and let \mathbf{K}_M be the space of all equivalence classes of functions in \mathcal{K}_M which are equal almost everywhere with respect to the Lebesgue measure.

Remark 1.2. \mathbf{K}_M is linear iff M satisfies the Δ_2 -condition.

Lemma 1.3. If N-function M(u) satisfies the Δ_a -condition, then for $k \geq 1$,

$$\int_0^{a^n} p(s)ds \le k^n \int_0^a p(s)ds.$$

Proof. We show by mathematical induction. Let n=1. Then $\int_0^a p(s)ds \leq k \int_0^a p(s)ds$, $k \geq 1$. Since M(u) satisfies the Δ_a -condition, $\lim_{u \to \infty} \frac{M(2u)}{M(u)} < \infty$. So there exist k > 1, $u_0 > 2$ such that $M(u^2) \leq kM(u)$ for $u \geq u_0$. Therefore $\int_0^{a^2} p(s)ds = M(a^2) \leq kM(a) = k \int_0^a p(s)ds \leq k^2 \int_0^a p(s)ds$ for $k \geq 1$. Assume that n=m. Then $\int_0^{a^m} p(s)ds \leq k^m \int_0^a p(s)ds$. If $n \geq m+1$ n=2m,

$$\int_0^{a^n} p(s)ds = \int_0^{a^{2m}} p(s)ds = \int_0^{(a^m)^2} p(s)ds \le k \int_0^{a^m} p(s)ds$$
$$\le kk^m \int_0^a p(s)ds = k^{m+1} \int_0^a p(s)ds \le k^{2m} \int_0^a p(s)ds.$$

If n = 2m + 1,

$$\int_0^{a^n} p(s)ds = \int_0^{a^{2m+1}} p(s)ds \le \int_0^{a^{2m+2}} p(s)ds = \int_0^{(a^{m+1})^2} p(s)ds$$

$$\le k \int_0^{a^{m+1}} p(s)ds \le k \int_0^{a^{2m}} p(s)ds \le kk^{2m} \int_0^a p(s)ds = k^{2m+1} \int_0^a p(s)ds.$$

Hence for all
$$n$$
, $\int_0^{a^n} p(s)ds \le k^n \int_0^a p(s)ds$.

Lemma 1.4. Let N-function M(u) satisfies the Δ_a -condition. For a N-function M(u) and a measurable function $u:[0,T] \to R$, let $\rho(u^n,M) = \int_0^T \int_0^{|u(t)|^n} p(s) ds dt$. Then

$$\rho(u^n, M) \le k^n \int_0^T \max\{\int_0^{|u(t)|} p(s)ds, \int_0^a p(s)ds\}dt.$$

Proof. Let $A = \{t \in [0,T] | u(t) \ge a\}$ and let $B = [0,T] - A = \{t \in [0,T] | u(t) < a\}.$

$$\begin{split} &\rho(u^n, M) = \int_0^T \int_0^{|u(t)|^n} p(s) ds dt \\ &= \int_A (\int_0^{|u(t)|^n} p(s) ds) dt + \int_B (\int_0^{|u(t)|^n} p(s) ds) dt \\ &\leq \int_A (\int_0^{|u(t)|^n} p(s) ds) dt + \int_B (\int_0^{a^n} p(s) ds) dt \\ &\leq \int_A k^n (\int_0^{|u(t)|} p(s) ds) dt + \int_B k^n (\int_0^a p(s) ds) dt \\ &\leq k^n \int_0^T \max \{ \int_0^{|u(t)|} p(s) ds, \int_0^a p(s) ds \} dt. \end{split}$$

(5) Let M and N be mutually complementary N-functions. We let $\mathcal{D}_M = \{u \in \mathbf{K}_M | u : [0,T] \to R \text{ is measurable such that for all } v \text{ in } \mathbf{K}_N, \ (u,v) = \int_{[0,T]} u(t)v(t)dt < \infty\}$. Let \mathcal{O}_M be the space of all equivalence classes of functions in \mathcal{D}_M which are equal almost everywhere with respect to the Lebegue measure. From Young's inequality, we have $\mathbf{K}_M \subset \mathcal{O}_M$. For u in \mathcal{O}_M , $\|u\|_M = \sup_{\rho(v,N) \leq 1} |(u,v)|$ is called the Orlicz norm of u and $\|u\|_{(M)} = \inf k$, where the infimum is taken over all k > 0 such that $\rho(u/k, M) \leq 1$, is called Luxemberg norm of u.

Remark 1.5. (a) For u in $\mathcal{O}_M, ||u||_M = 1 + \rho(u, M)$.

- (b) If M satisfies the Δ_2 -condition, then $(\mathcal{O}_M, ||u||_M)$ is a separable Banach space and $\mathbf{K}_M = \mathcal{O}_M$.
 - (c) For u in $\mathcal{O}_M, ||u||_{(M)} \le ||u||_M \le 2||u||_{(M)}$.
- (d) Let M and N be mutually complementary N-functions. Let E_M be the closure of L_{∞} with respect to the topology generated by the norm $\|\cdot\|_M$ and V^* be the dual space of the normed vector space V. Then $(E_M, \|\cdot\|_{(M)})^* = (\mathcal{O}_N, \|\cdot\|_N)$ and $(E_M, \|\cdot\|_M)^* = (\mathcal{O}_N, \|\cdot\|_{(N)})$.
- (e) If M satisfies the Δ_2 -condition, then $E_M = \mathcal{O}_M = \mathbf{K}_M$. So if M satisfies the Δ_2 -condition, then $(\mathcal{O}_M, \|\cdot\|_M)$ is reflexive.
- (f) Since $L_{\infty} \subset L_2 \subset \mathcal{O}_M$, the closure of L_2 with respect to the topology generated by the $\|\cdot\|_M$ is \mathcal{O}_M .
- (g) Let M and N be mutually complementary N-functions. For u in \mathcal{O}_M and v in \mathcal{O}_N , $|(u,v)| \leq \rho(u,M) + \rho(v,N)$, $|(u,v)| \leq ||u||_M ||v||_{(N)}$, and $|(u,v)| \leq ||u||_{(M)} ||v||_N$. Hence for u in L_2 , $||u||_2 \leq ||u||_M \leq 2||u||_{(M)}$.
- (h) If M satisfies the Δ_a -condition, then for u in \mathcal{O}_M , u^2 belongs to \mathcal{O}_M .
- (i) If M satisfies the Δ_a -condition, then for u, v in \mathcal{O}_M , there exists a constant c such that $||uv||_M \leq c||u||_M||v||_M$.
- (6) A subset I of L_2 of the form $I = \{u \in L_2 | P(u) \in F\}$ is called a cylinder set where P is a finite dimensional orthogonal projection of L_2 and F is a Borel subset of $P(L_2)$. The Gaussian measure on L_2 is a set function of all cylinder sets defined as follows: If $I = \{u \in L_2 | P(u) \in F\}$ then $\mu(I) = (2\pi)^{-n/2} \int_F e^{-\|t\|^2/2} dt$ where n is the dimension of $P(L_2)$. Then μ is not σ -finite. Suppose $\{e_n | n \in N\}$ be an orthonormal basis of L_2 . Let $\mu_{e_1, \dots, e_n}(F) = \mu\{u \in L_2 | ((u, e_1), (u, e_2), \dots, (u, e_n)) \in F\}$. Then $\{\mu_{e_1, \dots, e_n}\}$ is a consistence family of probability measure. By Kolomogorov's theorem, there exists a probability measure space (Ω, ω) and random variables $\xi_n : \Omega \to R$ $(n \in N)$ such that $\omega(\{z \in \Omega | (\xi_1(z), \xi_2(z), \dots, \xi_n(z)) \in F\}) = \mu_{e_1, \dots, e_n}(F)$. Without loss of generality, we can put $\Omega = \mathcal{O}_M$ because $\mathcal{O}_M \subset L_0$, the space of all measurable functions on [0, T] with the topology of convergence in measure.

Remark 1.6. (a) \mathcal{O}_M is a closed subset of L_0 .

(b) For nonzero v in \mathcal{O}_N and for a real number a,

$$\omega(\{u \in \mathcal{O}_M | (u, v) < a\}) = \frac{1}{\sqrt{2\pi \|v\|_{(N)}}} \int_{-\infty}^a e^{-t^2/(2\|v\|_{(N)})} dt.$$

(7) For two Borel measures m_1 and m_2 , we let $m_1*m_2(E+F)=m_1\times m_2(E\times F)$ for E,F in $\mathcal{B}(\mathcal{O}_M)$, the set of all Borel subsets of \mathcal{O}_M . For $\lambda>0$ and for B in $\mathcal{B}(\mathcal{O}_M)$, let $\omega_{\lambda}(B)=\omega(\lambda^{-1/2}B)$. Then for two positive real numbers s and t, $\omega_{\lambda}*\omega=\omega_{\sqrt{s^2+t^2}}$ and $\omega_{\lambda}*\delta_0=\omega_{\lambda}$, where δ_0 is the Dirac measure centered at 0.

2. The analogue of Wiener space with value in Orlicz Space

In this section, let M be an N-function which satisfies the Δ_a -condition. Let M and N be mutually complementary N-functions. Let $C(\mathcal{O}_M)$ be the space of all continuous functions defined on the interval [0,T] with values in \mathcal{O}_M in the norm $\|y\|_{C(\mathcal{O}_M)} = \sup_{0 \le t \le T} \|y(t)\|_M$ and ϕ be a probability Borel measure on \mathcal{O}_M . Let $\vec{t} = (t_0, t_1, \dots, t_n)$ be given with $0 = t_0 < t_1 < \dots < t_n \le T$ and let $T_{\vec{t}} : \mathcal{O}_M^{n+1} \to \mathcal{O}_M^{n+1}$ be a function given by

$$T_{\overline{t}}(x_0, x_1, \dots, x_n) = (x_0, x_0 + \sqrt{t_1}x_1, \dots, x_0 + \sum_{j=1}^n \sqrt{t_j - t_{j-1}}x_j).$$

We define a set function $v_{\vec{t}}^{\phi}$ on $\mathcal{B}(\mathcal{O}_{M}^{n+1})$ given by

$$v_{\vec{t}}^{\phi}(B) = \int_{\mathcal{O}_{M}} \left[\int_{\mathcal{O}_{M}^{n}} (\chi_{B} \circ T_{\vec{t}})((x_{0}, x_{1}, \cdots, x_{n})) d(\prod_{i=1}^{n} \omega)(x_{1}, \cdots, x_{n}) \right] d\phi(x_{0}),$$

where χ_B is a characteristic function associated with B. Then $v_{\vec{t}}^{\phi}$ is a Borel measure on $(\mathcal{O}_M^{n+1}, \mathcal{B}(\mathcal{O}_M^{n+1}))$. Let $J_{\vec{t}}: C(\mathcal{O}_M) \to \mathcal{O}_M^{n+1}$ be a function with $J_{\vec{t}}(y) = (y(t_0), y(t_1), \cdots, y(t_n))$. For Borel subsets B_0, B_1, \cdots, B_n in $\mathcal{B}(\mathcal{O}_M)$, the subset $J_{\vec{t}}^{-1}(\prod_{j=0}^n B_j)$ of $C(\mathcal{O}_M)$ is called an interval. Let \mathcal{J} be the set all such intervals. Then from [7], \mathcal{J} is a semi algebra. We define a set function M_{ϕ} on \mathcal{J} by $M_{\phi}(J_{\vec{t}}^{-1}(\prod_{j=0}^n B_j)) = v_{\vec{t}}^{\phi}(\prod_{j=0}^n B_j)$. Then from [7], M_{ϕ} is well defined on \mathcal{J} , $\mathcal{B}(C(\mathcal{O}_M))$ coincides with the smallest σ -algebra generated by \mathcal{J} and there exists a unique measure m_{ϕ}^M on $(C(\mathcal{O}_M), \mathcal{B}(C(\mathcal{O}_M)))$ such that $m_{\phi}^M(I) = M_{\phi}(I)$ for all I in \mathcal{J} . This measure space $(C(\mathcal{O}_M), \mathcal{B}(C(\mathcal{O}_M)), m_{\phi}^M)$ is called the analogue of Wiener measure space with values in Orlicz Space.

From the change of variable theorem, we have the following two theorems from [9].

Theorem 2.1. If $f: \mathcal{O}_M^{n+1} \to R$ is Borel measurable and $F: C(\mathcal{O}_M) \to R$ is a function with $F(y) = f(y(t_0), y(t_1), \cdots, y(t_n))$ then the following equality holds

$$\int_{C(\mathcal{O}_M)} F(y) dm_{\phi}^M(y) = \int_{C(\mathcal{O}_M)} f(y(t_0), y(t_1), \cdots, y(t_n)) dm_{\phi}^M(y)$$

$$\doteq \int_{\mathcal{O}_M} \left[\int_{\mathcal{O}_M^n} (f \circ T_{\vec{t}}) ((x_0, x_1, \cdots, x_n)) d(\prod_{j=1}^n \omega) (x_1, \cdots, x_n) \right] d\phi(x_0)$$

where \doteq means that if one side exists then both sides exist and the two values are equal.

Theorem 2.2. If $f: R^{n+1} \to R$ is Borel measurable and v is a nonzero element in \mathcal{O}_N .

$$\int_{C(\mathcal{O}_{M})} f((v, y(t_{0})), (v, y(t_{1})), \cdots, (v, y(t_{n}))) dm_{\phi}^{M}(y)$$

$$\dot{=} \{(2\pi)^{n} ||v||_{(N)} \prod_{j=1}^{n} \sqrt{t_{j} - t_{j-1}} \}^{-1/2} \int_{R} [\int_{R^{n}} f(s_{0}, s_{1}, \cdots, s_{n})] ds_{n} ds_{n-1} ds_{n} ds_{n-1} ds_{n} ds_{n-1} ds_{n} ds_{n} ds_{n-1} ds_{n} ds_{n} ds_{n-1} ds_{n} ds_{n} ds_{n} ds_{n-1} ds_{n} ds$$

where \doteq means that if one side exists, then both sides exist and the two values are equal.

Lemma 2.3. Let M satisfies the Δ_a -condition. For $u \in \mathcal{O}_M$, $||u^n||_M \le \rho(u^n, M) + 1$.

Proof. By Remark 1.5 (a) and (h), $||u||_M = 1 + \rho(u, M)$. Since \mathcal{O}_M is linear, $u^n \in \mathcal{O}_M$. So we replace u with u^n . Hence $||u^n||_M \leq \rho(u^n, M) + 1$.

Theorem 2.4. Suppose $\int_{\mathcal{O}_M} \|u_0\|_M^n d\phi(u_0)$ is finite. Then for $0 \le t \le T$, $F(y) = y^n$ is m_{ϕ}^M -Bochner integrable on $C(\mathcal{O}_M)$.

Proof. Let D be the set of all rational numbers in [0,T]. Then we can write $D = \{t_n | \text{n is a natural numbers }\}$. For a natural number m, let $D_m = \{t_1, t_2, \dots, t_m\}$. Then by the monotone convergence theorem

and by Theorem 2.1, and let $A = \max\{\rho(u_1^k, M) + 1 | k = 0, 1, 2, \dots, n\}$.

$$\int_{C(\mathcal{O}_{M})} \|y^{n}\|_{C(\mathcal{O}_{M})} dm_{\phi}^{M}(y) = \int_{C(\mathcal{O}_{M})} \sup_{t \in D} \|y(t)^{n}\|_{M} dm_{\phi}^{M}(y)$$

$$= \int_{C(\mathcal{O}_{M})} \lim_{m \to \infty} \sup_{t \in D_{m}} \|y(t)^{n}\|_{M} dm_{\phi}^{M}(y)$$

$$= \lim_{m \to \infty} \int_{C(\mathcal{O}_{M})} \sup_{t \in D_{m}} \|y(t)^{n}\|_{M} dm_{\phi}^{M}(y)$$

$$= \lim_{m \to \infty} \int_{\mathcal{O}_{M}} \int_{\mathcal{O}_{M}} \sup_{t \in D_{m}} \|(u_{0} + \sqrt{t}u_{1})^{n}\|_{M} d\omega(u_{1}) d\phi(u_{0})$$

$$\leq \lim_{m \to \infty} \int_{\mathcal{O}_{M}} \int_{\mathcal{O}_{M}} \sum_{k=0}^{n} \binom{n}{k} \|(\sqrt{t}u_{1})^{k}\|_{M} \|u_{0}^{n-k}\|_{M} d\omega(u_{1}) d\phi(u_{0})$$

$$\leq \sum_{k=0}^{n} \binom{n}{k} (\sqrt{T})^{k} \int_{\mathcal{O}_{M}} \int_{\mathcal{O}_{M}} \|u_{1}^{k}\|_{M} \|u_{0}^{n-k}\|_{M} d\omega(u_{1}) d\phi(u_{0})$$

$$\leq \sum_{k=0}^{n} \binom{n}{k} (\sqrt{T})^{k} \int_{\mathcal{O}_{M}} [\rho(u_{1}^{k}, M) + 1] d\omega(u_{1}) \int_{\mathcal{O}_{M}} \|u_{0}\|_{M}^{n-k} d\phi(u_{0})$$

$$\leq \sum_{k=0}^{n} \binom{n}{k} (\sqrt{T})^{k} \cdot A\omega(\mathcal{O}_{M}) \int_{\mathcal{O}_{M}} \|u_{0}\|_{M}^{n-k} d\phi(u_{0}) < \infty.$$

Since F is weakly measurable and $C(\mathcal{O}_M)$ is separable, from [2], $F(y) = y^n$ is m_{ϕ}^M -Bochner integrable on $C(\mathcal{O}_M)$.

References

- [1] Abdallah Hakawati, The Multiplier Algebra of Orlicz Spaces, An-Naha Univ.J.Res. 12 (1998), 1-6.
- [2] J. Diestel and J.J. Uhl Jr., Vector Measure, With a foreword by B.J. Pettis. Mathematical Surveys, Amer. Math. Soc. 15 Providence, R.I., (1977).
- [3] T. Jurlewicz, Law of the Iterated Logarithm for Wiener Processes with Values in Orlicz Spaces, Probability and Mathematical Statistics 7 (1986), 159-167.
- [4] M.A. Kransnoselskii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces, P. Nororodhoff, Ltd. Groningen. (1961).
- [5] A. Lawniczak, Gaussian Measures on Orlicz Spaces and Abstract Wiener Spaces, Lecture Notes in Math 939 (1982), 81-97.
- [6] K.S. Ryu, The Wiener Integral over Paths in Abstract Wiener Spaces, J. Korean. Math. Soc. 29 (1992), 317-331.
- [7] K.S. Ryu, Integration with respect to Analogue of Wiener Measure over Paths in Abstract Wiener Spaces and Applications, Bull. Korean Math. Soc. 47 (2010), 131-149.

- [8] K.S. Ryu and M.K. Im, A measure Valued Analogue of Wiener Measure and the Measure-Valued Feynman Kac Formula, Tran. Amer. Math. Soc. 354 (2002), 4921-4951.
- [9] K.S. Ryu, The Analogue of Wiener Space with Values in Orlicz Space, Chungcheong Math. Soc. 27 No.4 (2014), 689-695.

Yeon Hee Park
Department of Mathematics Education and
Institute of Pure and Applied Mathematics,
Chonbuk National University, Chonju, Chonbuk 54896, Korea.
E-mail: yhpark@jbnu.ac.kr