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ON THE IDENTITIES BETWEEN THE ARITHMETIC

FUNCTIONS

Insuk Kim

Abstract. Dirichlet series is a Riemann zeta function attached
with an arithmetic function. Here, we studied the properties of
Dirichlet series and found some identities between arithmetic func-
tions.

1. Introduction

In multiplicative analytic number theory, many problems depend on
properties of the zeta function, such as zero free region and zero density
estimates. Thus a better understanding of the zeta function theory is
the simplest of a large class of Dirichlet series which are known as zeta
functions attached with arithmetical functions.

A function defined on the set of natural numbers is called an arith-
metic function. There exist many other interesting problems involving
summatory functions of arithmetical functions, where the generating
series of the arithmetical functions in question factors into a product.
Since these problems give some information of the properties of zero
density estimates and distribution of primes, several arithmetical func-
tions were studied in [2], [3]. In this paper, we study certain relations
between arithmetical functions.

2. Arithmetical functions

We list some of mutiplicative arithmetic functions which we will study
in this paper.
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Möbius function, µ(n) which is defined as follows.

µ(n) =





1 if n = 1,

(−1)r if n is a product of r distinct primes,

0 if n is divisible by the square of a prime.

The sum of the divisors of n is denoted by σ(n),

σ(n) =
∑

d|n
d.

Generally, σa(n) =
∑

d|n d
a.

Euler ϕ function which is defined to be the number of positive integers
not exceeding n that are relatively prime to n can be rewrite as:

ϕ(n) =
∑

d|n

n

d
µ(d) = n

∏
(1− p−1).

A divisor function, dk(n), is defined by

dk(n) =
∑

d1·d2···dk=n

1.

Remark 2.1. If k = 2, then d(n) = d2(n) is the number of divisors
of n.

Liouville function, λ(n),

λ(n) =
∑

d2|n
µ(n/d2).

Let ω(n) be the number of distinct prime factors of n. Since ω(n)

is not multiplicative, we consider 2ω(n) as a multiplicative arithmetic
function.

Riemann zeta function is defined as

ζ(s) =

∞∑

n=1

n−s (Re(s) > 1).

Historically, the zeta function arose from the need for an analytic tool
capable of dealing with the problems involing prime numbers. Thus to
study the properties of Riemann zeta function, we need a Dirichlet series
F (s) which is a function generated by an arithmetic function f(n), i.e.

F (s) =
∞∑

n=1

f(n)n−s,
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provided that such a series converges for some s = s0.
For examples,

∞∑

n=1

λ(n)n−s =
ζ(2s)

ζ(s)
,

∞∑

n=1

2ω(n)n−s =
ζ2(s)

ζ(2s)
.

From the above definitions, we have following lemmas which are well
known. Since we will use these lemmas for the main theorems, we state
them with short proofs.

Lemma 2.2. We have

ζ(s)ζ(s− a) =

∞∑

n=1

σa(n)n
−s.

Proof. See p.66 in [1].

Lemma 2.3. Let the notations be as above. Then

ζ(s− 1)

ζ(s)
=

∞∑

n=1

ϕ(n)n−s

for σ > 2.

Proof. Since ϕ is a multiplicative function,
∞∑

n=1

ϕ(n)n−s =
∏
p

(
1 +

∞∑

k=1

ϕ(pk)p−sk

)

=
∏
p

(
1 +

∞∑

k=1

pk(1− p−1)p−sk

)

=
∏
p

(
1 + (1− p−1)

p−s+1

1− p−s+1

)

=
ζ(s− 1)

ζ(s)
.

Lemma 2.4. For any arithmetic functions f and g, let F (s) and
G(s) be the Dirichlet series defined by

F (s) =
∞∑

n=1

f(n)n−s, G(s) =
∞∑

n=1

g(n)n−s.

If F (σ) = G(σ) for σ > σ0, then f(n) = g(n) for all n.
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Proof. Since both series converge uniformly for σ > σ0+ ε, if σ → ∞,
f(1) = g(1) is obtained. Suppose that f(n) = g(n) for n = 1, 2, · · · , N−
1. Then

f(N) = lim
σ→∞

(
Nσ

∞∑

n=N

f(n)n−σ

)
= lim

σ→∞

(
Nσ

∞∑

n=N

g(n)n−σ

)
= g(N).

Hence f(n) = g(n) for all n.

Remark 2.5. Suppose that F (s) and G(s) are two Dirichlet series
which converge absolutely for σ > σ1. Then

F (s)G(s) =

∞∑

k=1

f(k)k−s
∞∑

l=1

g(l)l−s =

∞∑

n=1

h(n)n−s = H(s),

where H(s) also converges absolutely for σ > σ1. The arithmetical
function h(n) can be wrritten as

h(n) =
∑

kl=n

f(k)g(l) =
∑

d|n
f(d)g(n/d) =

∑

d|n
g(d)f(n/d).

Theorem 2.6. Let n be a positive integer. Then

d(n) =
1

n
σ(n) ∗ ϕ(n).

Proof. By Lemma 2.2 and Lemma 2.3,

ζ(s)ζ(s− 1) · ζ(s− 1)

ζ(s)
=

∞∑

n=1

σ(n)n−s ·
∞∑

n=1

ϕ(n)n−s.

Thus,

ζ2(s− 1) =

∞∑

n=1

(σ ∗ ϕ)(n)n−s,

which means

∞∑

n=1

d(n)n−s+1 =
∞∑

n=1


∑

d|n
σ(d)ϕ(n/d)


n−s.

By Lemma 2.4, we have

d(n) =
1

n
σ(n) ∗ ϕ(n).

Theorem 2.7. Let the notations be as above.

λ(n) ∗ 2ω(n) = 1.
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Proof. Since

ζ(2s)

ζ(s)
=

∞∑

n=1

λ(n)n−s and
ζ(s)2

ζ(2s)
=

∞∑

n=1

2ω(n)n−s,

it is easy to see

ζ(s) =

∞∑

n=1

∑

d|n
λ(d)2ω(n/d)n−s.

Thus it follows immediately that

λ(n) ∗ 2ω(n) = 1.

Theorem 2.8. (Möbius inversion formula) For any function f : N→
C, if the function g : N→ C is defined by writing

g(n) =
∑

m|n
f(n)

for every n ∈ N, then for every n ∈ N, we have

f(n) =
∑

m|n
µ(m)g

( n

m

)
=

∑

m|n
µ
( n

m

)
g(m).

Proof. See [2].

Applying the Möbius inversion formula, we have

ϕ(n) =
∑

m|n
µ(m)

n

m
.

We are now in position to state the main results in this paper.

Lemma 2.9. For every number n ∈ N,
n∑

m=1,(m,n)=1

m = n
ϕ(n)

2
.

Proof. If k < n
2 is relatively prime to n, so is n − k. Thus there are

ϕ(n)
2 k′s. That is, the sum of all numbers which are relative prime to n

is n · ϕ(n)
2 .
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Lemma 2.10. Let n = pv11 · · · pvkk for primes pi, i = 1, · · · , k,
n∑

m=1,(m,n)=1

m2 =
1

3
ϕ(n)n2 +

1

6
(−1)kϕ(n)p1 · · · pk.

Proof. Let Z×
m be the multiplicative group of integers modulo m.

Then it has ϕ(m) elements. If we consider C(m) = {(n/m)2 ·d2|d ∈ Z×
m},

then claim that ∪m|nC(m) = {1, 22, · · · , n2}. If (n/m1)
2d1 = (n/m2)

2d2
with (m1, d1) = 1 and (m2, d2) = 1, then d1 = m2 and d2 = m1, which
is absurd because mi ≥ di for i = 1, 2 and m1 6= m2. Thus if i 6= j,
C(mi) ∩ C(mj) = ∅. Here, if we let t(d) =

∑n
m=1,(m,n)=1m

2, then

∑

d|n

(n
d

)2
t(d) =

n∑

m=1

m2 =
n(n+ 1)(2n+ 1)

6
.

Applying the Möbius inversion formula to
∑

d|n
t(d)
d2

, we have

t(n) =
n∑

m=1,(m,n)=1

m2 =
∑

m|n
µ(m)

2(n/m)2 + 3(n/m) + 1

6(n/m)

=
∑

m|n
µ(m)

n

3m
+
∑

m|n

1

2
µ(m) +

∑

m|n
µ(m)

m

6n

=
1

3

∑

m|n
µ(m)

n

m
+ 0 +

1

6

∑

m|n
µ(m)

m

n

=
1

3
ϕ(n)n2 +

1

6
(−1)kϕ(n)p1 · · · pk.

Next, we consider the case
∑n

m=1,(m,n)=1m
3.

Theorem 2.11. For every number n = pv11 · · · pvkk ,

n∑

m=1,(m,n)=1

m3 =
1

4
ϕ(n)n3 +

1

4
(−1)kϕ(n)p1 · · · pk.

Proof. Let t(d) =
∑n

m=1,(m,n)=1m
3. Then as in the proof of Lemma

2.10,
∑

d|n

(n
d

)3
t(d) =

n∑

m=1

m3 =
n2(n+ 1)2

4
.
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Applying the Möbius inversion formula,

t(n) =
n∑

m=1,(m,n)=1

m3 =
∑

m|n
µ(m)

n2 + 2n+ 1

4n

=
∑

m|n
µ(m)

n

4m
+

∑

m|n

1

2
µ(m) +

∑

m|n

m

4n

=
1

4
ϕ(n)n3 +

1

4
(−1)kϕ(n)p1 · · · pk.

In a similar way, if we evaluate the case k = 4 or over, we are able to
find a formula for

∑n
m=1,(m,n)=1m

k for k ≥ 4.
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