DOI QR코드

DOI QR Code

시변 수중 음향 채널에서 코드 분할 다중 접속 방식의 폐루프 전력 제어 기법

Closed-Loop Power Control for Code Division Multiple Access in Time-Varying Underwater Acoustic Channel

  • 서보민 (경북대학교 대학원 전자공학부) ;
  • 조호신 (경북대학교 대학원 전자공학부)
  • Seo, Bo-Min (School of Electronics Engineering, Kyungpook National University) ;
  • Cho, Ho-Shin (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2015.11.04
  • 심사 : 2015.11.25
  • 발행 : 2015.12.25

초록

코드 분할 다중 접속 기법은 주파수 선택적 페이딩과 다중 경로 페이딩에 강인할 뿐만 아니라 주파수 재사용 효율이 좋으므로 수중 환경에서의 유망한 매체 접속 제어 기법으로 많은 연구가 진행되고 있다. 본 논문에서는 시변 수중 음향 채널에서 코드 분할 다중 접속 방식의 폐루프 전력 제어 기법을 설계한다. 본 기법에서는 싱크 노드가 센서 노드로부터 수신한 패킷의 수신 전력을 바탕으로 시변하는 상향 링크를 분석하고 각 센서 노드의 경로 손실의 크기를 포함한 제어 패킷을 센서 노드로 전송한다. 센서 노드는 이를 바탕으로 전력 제어를 수행함으로써 시변 수중 채널에서 효율적인 전력 제어가 가능하다.

Code division multiple access (CDMA) is one of the promising medium access control scheme for underwater acoustic sensor networks due to its beneficial features such as robustness against frequency-selective fading and high frequency-reuse efficiency. In this paper, we design a closed-loop power control scheme for the underwater CDMA, to adapt time-varying acoustic channel. In the proposed scheme, sink node sends to sensor nodes the associated path loss which is acquired by uplink-channel analysis based on received packets from the sensor nodes. Then, sensor nodes adjust their transmission power in an adaptive manner to time-varying underwater acoustic channel, according to the informations sent by the sink node.

키워드

참고문헌

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater Acoustic Sensor Networks: Research Challenges," Ad Hoc Networks (Elsevier), Vol. 3, pp. 257-279, Jan. 2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  2. L. Xavier, An Introduction to Underwater Acoustics - Principles and Applications, Springer Praxis, New York, 2002.
  3. M. Stojanovic and C. J. Preisig, "Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization," IEEE Comm. Mag., Vol. 47, pp. 84-89, Feb. 2009.
  4. M. Stojanovic, "On the Relationship Between Capacity and Distance in an Underwater Acoustic Communication Channel," ACM SIGMOBILE Mobile Comput. and Comm. Rev., Vol. 11, no. 4, pp. 34-43 Oct. 2007 https://doi.org/10.1145/1347364.1347373
  5. J. A. Rice and W. O. Che, "A Discovery Process for Initializing Underwater Acoustic Networks," in Proc. of 2010 4th International Conf. on SENSORCOMM, pp. 408-415, Venice, Italy, Jul. 2010.
  6. F. Guerra, and P. Casari, "Performance Comparison of MAC Protocols for Underwater Networks Using a Realistic Channel Simulator," in Proc. of MTS/IEEE OCEANS Conf.: Marine Technology for our Future: Global and Local Challenges, pp. 1-8, Biloxim USA, Oct. 2009.
  7. G. Xie, J. Gibson, and L. Diaz-Gonzalez, "Incorporating Realistic Acoustic Propagation Models in Simulation of Underwater Acoustic Networks: A Statistical Approach," in Proc of OCEANS 2006, pp. 1-9, Boston, USA, Sept. 2006.
  8. J. Llor and M. P. Malumbres, "Performance Evaluation of Underwater Wireless Sensor Networks with OPNET," in Proc. of 4th Int. ICST Conf. on Simulation Tools and Techniques, pp. 19-26, Athens, Greece, Aug. 2011.
  9. J. -I. Namgung, N. -Y. Yun, and S. -H. Park, "P-MAC: Adaptive MAC Protocol based on Underwater Environment Information for Underwater Acoustic Sensor Networks," in Proc. of IEIE Summer Conference 2009, pp. 673-674, Jeju, Korea, Jul. 2009.
  10. E. Sozer, J. Proakis, M. Stojanovic, J. Rice, A. Benson, and M. Hatch, "Direct Sequence Spread Spectrum Based Modem for Underwater Acoustic Communication and Channel Measurements," in Proc. of MTS/IEEE OCEANS'99, pp. 228-233, Seattle, USA, Sept. 1999.
  11. Z A. Muqattash, M. Krunz, and W. E. Ryan, "Solving the near-far problem in CDMA-based ad hoc networks," Ad Hoc Networks (Elsevier), Vol. 1, no. 4, pp. 435-453, 2003. https://doi.org/10.1016/S1570-8705(03)00045-3
  12. K. -J. Lim, I. -B. Hyun, and K. -S. Kwak, "Generalized Model for DS/CDMA Cellular System Considering Base-received Power Control and Pilot Power Control," in Proc. of IEIE Conference 1996, pp. 27-30, Sept. 1996.
  13. X. Wei, L. Zhao, X. Li, and C. Zou, "A Distributed Power Control Based MAC Protocol for Underwater Acoustic Sensor Networks," in Proc. of IEEE International Conf. on ICCSC 2008, pp. 688-692, Shanghai, China, May 2008.
  14. D. Pompili, "A CDMA-based Medium Access Control for Underwater Acoustic Sensor Networks," IEEE Trans. on Wireless Communications, Vol. 8, no. 4, pp. 1899-1909, Apr. 2009. https://doi.org/10.1109/TWC.2009.080195
  15. S. Morten and J. Trond, "Characterization of long-range time-varing underwater acoustic communication channels," J. of the Acoustical Society of America, vol. 123, no. 5, pp. 6097-6102, May 2008.
  16. J. Llor and M. P. Malumbres, "Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks," Sensors, Vol. 13, no. 2, pp. 2279-2294 Feb. 2013. https://doi.org/10.3390/s130202279
  17. M. B. Porter, "Bellhop code," http://oalib.hlsresearch.com/Rays/index.html