References
- Abraham, F.F. and Broughton, J.Q. (1998), "Large-scale simulations of brittle and ductile failure in fcc crystals", Comput. Mater. Sci., 10, 1-9. https://doi.org/10.1016/S0927-0256(97)00092-X
- Amarillas, A.P. and Garzon, I.L. (1996), "Microstructural analysis of simulated liquid and amorphous Ni", Phys. Rev. B, 53, 8363. https://doi.org/10.1103/PhysRevB.53.8363
- Bhatia, M.A., Solanki, K.N., Moitra, A. and Tschopp, M.A. (2011), "The effect of crystallographic orientation on void growth: A molecular dynamics study", Min. Metal. Mat. Soc. ASM Int., 44A, 617-626.
- Bringa, E.M., Traiviratana, S. and Meyers, M.A. (2010), "Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects", Acta Materialia, 58, 4458-4477. https://doi.org/10.1016/j.actamat.2010.04.043
- Clarke, A.S. and Jonsson, H. (1993), "Structural changes accompanying densification of random hard-sphere packings", Phys. Rev. E, 47, 3975.
- Dantuluri, V., Maiti, S., Geubelle, P.H., Patel, R. and Kilic, H. (2007), "Cohesive modeling of delamination in Z-pin reinforced composite laminates", Comp. Sci. Tech., 67(3-4), 616-631. https://doi.org/10.1016/j.compscitech.2006.07.024
- Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29, 6443-6453. https://doi.org/10.1103/PhysRevB.29.6443
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8, 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
- Faken, D. and Jonsson, H. (1994), "Systematic analysis of local atomic structure combined with 3D computer graphics", Comput. Mater. Sci., 2, 279-586. https://doi.org/10.1016/0927-0256(94)90109-0
- Ganesh, P. and Widom, M. (2006), "Signature of nearly icosahedral structures in liquid and supercooled liquid copper", Phys. Rev. B, 74, 134205. https://doi.org/10.1103/PhysRevB.74.134205
- Garrison, W.M. Jr. and Moody, N.R. (1987), "Ductile fracture", J. Phys. Chem. Solid., 48, 1035-1074. https://doi.org/10.1016/0022-3697(87)90118-1
- Garzon, I.L. and Amarillas, A.P. (1996), "Structural and vibrational analysis of amorphous Au 55 clusters", Phys. Rev. B, 54, 11796. https://doi.org/10.1103/PhysRevB.54.11796
- Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Phil. Trans. R. Soc. Lond. A, 221, 163-198. https://doi.org/10.1098/rsta.1921.0006
- Holland, D. and Marder, M. (1999), "Cracks and atoms", Adv. Mater., 10(11), 793-806.
- Honeycutt, J.D. and Andersen, H.C. (1987), "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters", J. Phys. Chem., 91(19), 4950-4963. https://doi.org/10.1021/j100303a014
- Hoover, W.G. (1985), "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A, 31, 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
- Horstemeyer, M.F. and Baskes, M.I. (1999), "Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses", ASME Tran. J. Eng. Mater. Tech., 121, 114-119. https://doi.org/10.1115/1.2812354
- Irwin, G.R. (1948), "Fracture dynamics", Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland, OH.
- Irwin, G.R. (1956), "Plastic zone near a crack and fracture toughness", Proceedings of the Sagamore Conference on Strength Limitations of Metals, NY Syracuse University Press, 2, 289-305.
- Irwin, G.R. (1957), "Analysis of stresses and strain near the end of a crack traversing a plate", Tran. ASME Ser. E: J. Appl. Mech., 24, 361-364.
- Jakse, N. and Pasturel, A. (2004), "Ab initio molecular dynamics simulations of local structure of supercooled Ni", J. Chem. Phys., 120(13), 6124-6127. https://doi.org/10.1063/1.1651054
- Jonsson, H. and Andersen, H.C. (1988), "Icosahedral ordering in the Lennard-Jones liquid and glass", Phys. Rev. Lett., 60, 2295. https://doi.org/10.1103/PhysRevLett.60.2295
- Krull, H. and Yuan, H. (2011), "Suggestions to the cohesive traction-separation law from atomistic simulations", J. Eng. Fract. Mech., 78, 525-533. https://doi.org/10.1016/j.engfracmech.2009.12.014
- Kubair, D.V., Geubelle, P.H. (2003), "Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture", Int. J. Solid. Struct., 40, 3853-3868. https://doi.org/10.1016/S0020-7683(03)00171-9
- LAMMPS (2013), http://www.cs.sandia.gov/-sjplimp/lammps.html
- Li, T.X., Yin, S.Y., Ji, Y.L., Wang, B.L., Wang, G.H. and Zhao, J.J. (2000), "A genetic algorithm study on the most stable disordered and ordered configurations of Au 38-55", Phys. Lett. A, 267(5-6), 403-407. https://doi.org/10.1016/S0375-9601(00)00120-1
- Liu, X.Y., Ercolessi, F. and Adams, J.B. (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Model. Simul. Mater. Sci. Eng., 12, 665-670. https://doi.org/10.1088/0965-0393/12/4/007
- McClintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes", J. Appl. Mech., 35(2), 363-371. https://doi.org/10.1115/1.3601204
- Needleman, A. (1987), "A continuum model for void nucleation by inclusion debonding", J. Appl. Mech., 54, 525-531. https://doi.org/10.1115/1.3173064
- Needleman, A. (1990), "An analysis of decohesion along an imperfect interface", Int. J. Fract., 42, 21-40. https://doi.org/10.1007/BF00018611
- Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, 511-519. https://doi.org/10.1063/1.447334
- Paliwal, B. and Cherkaoui, M. (2013), "An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth", Int. J. Solid. Struct., 50, 3346-3360. https://doi.org/10.1016/j.ijsolstr.2013.06.002
- Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
- Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J. and Gullett, P.M. (2006), "A molecular dynamics study of void growth and coalescence in single crystal nickel", Int. J. Plast., 22, 257-278. https://doi.org/10.1016/j.ijplas.2005.02.001
- Ren, G.W., Tang, T.G. and Li, Q.Z. (2012), "Atomistic study of anisotropic effect on two-dimensional dynamic crack", Front. Mater. Sci., 6(1), 87-96. https://doi.org/10.1007/s11706-012-0159-3
- Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power-law hardening material", J. Mech. Phys. Solid., 16, 1-12. https://doi.org/10.1016/0022-5096(68)90013-6
- Rosch, F., Trebin, H.R. and Gumbsch, P. (2006), "Fracture of complex metallic alloys: An atomistic study of model systems", Phil Mag., 86, 1015-1020. https://doi.org/10.1080/14786430500256326
- Le Roy, G., Embury, J.D., Edwards, G. and Ashby, M.F. (1981), "A model of ductile fracture based on the nucleation and growth of voids", Acta Metallurgica, 29, 1509-1522. https://doi.org/10.1016/0001-6160(81)90185-1
- Schiotz, J., DiTolla, F.D. and Jacobsen, K.W. (1998b), "Softening of nanocrystalline metals at very small grain sizes", Nature, 391, 561-563. https://doi.org/10.1038/35328
- Schiotz, J., Vegge, T., DiTolla, F.D. and Jacobsen, K.W. (1999), "Atomic-scale simulations of the mechanical deformation of nanocrystalline metals", Phys. Rev. B, 60, 11971. https://doi.org/10.1103/PhysRevB.60.11971
- Sorensen, M.R., Brandbyge, M. and Jacobsen, K.W. (1998a), "Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms", Phys. Rev. B, 57, 3283. https://doi.org/10.1103/PhysRevB.57.3283
- Swope, W.C., Andersen, H.C., Berens, P.H. and Wilson, K.R. (1982), "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters", J. Chem. Phys., 76, 637-649. https://doi.org/10.1063/1.442716
- Tai, W.H. and Yang, B.X. (1986), "A new microvoid-damage model for ductile fracture", Eng. Fract. Mech., 25, 377-384. https://doi.org/10.1016/0013-7944(86)90133-5
- Thomason, P.F. (1998), "A view on ductile-fracture modelling", Fatig. Fract. Eng. Mater. Struct., 21(9), 1105-1122. https://doi.org/10.1046/j.1460-2695.1998.00077.x
- Tomar, V., Zhai, J. and Zhou, M. (2004), "Bounds for element size in a variable stiffness cohesive finite element model", Int. J. Numer. Meth. Eng., 61, 1894-1920. https://doi.org/10.1002/nme.1138
- Tvergaard, V. (2001), "Crack growth predictions by cohesive zone model for ductile fracture", J. Mech. Phys. Solid., 49, 2191-2207. https://doi.org/10.1016/S0022-5096(01)00030-8
- Westergaard, H.M. (1939), "Bearing pressures and cracks", J. Appl. Mech., 6, 49-53.
- Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", Trans. AMSE J. Appl. Mech., 24, 109-114.
- Wu, W. and Yao, Z. (2012), "Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel", J. Theo. Appl. Fract. Mech., 62, 67-75. https://doi.org/10.1016/j.tafmec.2013.01.008
- Xu, S. and Deng, X. (2008), "Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal", Nanotechnology, 19, 115705. https://doi.org/10.1088/0957-4484/19/11/115705
- Xue, L. and Wierzbicki, T. (2008), "Ductile fracture initiation and propagation modeling using damage plasticity theory", J. Eng. Fract. Mech., 75, 3276-3293. https://doi.org/10.1016/j.engfracmech.2007.08.012
- Yamakov, V., Saether, E., Phillips, D.R. and Glaessgen, E.H. (2006), "Molecular-dynamics simulationbased cohesive zone representation of intergranular fracture processes in aluminum", J. Mech. Phys. Solid., 54, 1899-1928. https://doi.org/10.1016/j.jmps.2006.03.004
- Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. and Gleiter, H. (2002), "Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation", Nature Mater., 1(1), 45-49. https://doi.org/10.1038/nmat700
- Yavari, A.R., Lewandowski, J.J. and Eckert, J. (2007), "Mechanical properties of bulk metallic glasses", Mrs Bull., 32(08), 635-638. https://doi.org/10.1557/mrs2007.125
- Zeng, X. and Li, S. (2010), "A multiscale cohesive zone model and simulations of fractures", Comput. Meth. Appl. Mech. Eng., 199, 547-556. https://doi.org/10.1016/j.cma.2009.10.008
- Zhou, X.W., Moody, N.R., Jones, R.E., Zimmerman, J.A. and Reedy, E.D. (2009), "Molecular-dynamicsbased cohesive zone law for brittle interfacial fracture under mixed loading conditions: effects of elastic constant mismatch", Acta Materialia, 57(16), 4671-4686. https://doi.org/10.1016/j.actamat.2009.06.023
- Zhou, M. (2003), "A new look at the atomic level virial stress: on continuum-molecular system equivalence", Proc. R. Soc. London A, 459, 2347-2392. https://doi.org/10.1098/rspa.2003.1127
- Zhou, X.W., Zimmerman, J.A., Reedy, E.D. and Moody, N.R. (2008), "Molecular dynamics simulation based cohesive surface representation of mixed mode fracture", Mech. Mater., 40, 832-845. https://doi.org/10.1016/j.mechmat.2008.05.001
Cited by
- Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation vol.9, pp.2, 2020, https://doi.org/10.12989/anr.2020.9.2.083
- Molecular dynamics investigation of pull-in instability in graphene sheet under electrostatic and van der Waals forces vol.11, pp.2, 2015, https://doi.org/10.12989/anr.2021.11.2.173