DOI QR코드

DOI QR Code

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar (Aeronautical Development Establishment, Defence Research and Development Organization) ;
  • Subramanya, N. (Aeronautical Development Establishment, Defence Research and Development Organization) ;
  • Mahapatra, D. Roy (Department of Aerospace Engineering, Indian Institute of Science)
  • Received : 2015.07.03
  • Accepted : 2015.12.08
  • Published : 2015.09.25

Abstract

Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Keywords

References

  1. Abraham, F.F. and Broughton, J.Q. (1998), "Large-scale simulations of brittle and ductile failure in fcc crystals", Comput. Mater. Sci., 10, 1-9. https://doi.org/10.1016/S0927-0256(97)00092-X
  2. Amarillas, A.P. and Garzon, I.L. (1996), "Microstructural analysis of simulated liquid and amorphous Ni", Phys. Rev. B, 53, 8363. https://doi.org/10.1103/PhysRevB.53.8363
  3. Bhatia, M.A., Solanki, K.N., Moitra, A. and Tschopp, M.A. (2011), "The effect of crystallographic orientation on void growth: A molecular dynamics study", Min. Metal. Mat. Soc. ASM Int., 44A, 617-626.
  4. Bringa, E.M., Traiviratana, S. and Meyers, M.A. (2010), "Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects", Acta Materialia, 58, 4458-4477. https://doi.org/10.1016/j.actamat.2010.04.043
  5. Clarke, A.S. and Jonsson, H. (1993), "Structural changes accompanying densification of random hard-sphere packings", Phys. Rev. E, 47, 3975.
  6. Dantuluri, V., Maiti, S., Geubelle, P.H., Patel, R. and Kilic, H. (2007), "Cohesive modeling of delamination in Z-pin reinforced composite laminates", Comp. Sci. Tech., 67(3-4), 616-631. https://doi.org/10.1016/j.compscitech.2006.07.024
  7. Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29, 6443-6453. https://doi.org/10.1103/PhysRevB.29.6443
  8. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8, 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  9. Faken, D. and Jonsson, H. (1994), "Systematic analysis of local atomic structure combined with 3D computer graphics", Comput. Mater. Sci., 2, 279-586. https://doi.org/10.1016/0927-0256(94)90109-0
  10. Ganesh, P. and Widom, M. (2006), "Signature of nearly icosahedral structures in liquid and supercooled liquid copper", Phys. Rev. B, 74, 134205. https://doi.org/10.1103/PhysRevB.74.134205
  11. Garrison, W.M. Jr. and Moody, N.R. (1987), "Ductile fracture", J. Phys. Chem. Solid., 48, 1035-1074. https://doi.org/10.1016/0022-3697(87)90118-1
  12. Garzon, I.L. and Amarillas, A.P. (1996), "Structural and vibrational analysis of amorphous Au 55 clusters", Phys. Rev. B, 54, 11796. https://doi.org/10.1103/PhysRevB.54.11796
  13. Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Phil. Trans. R. Soc. Lond. A, 221, 163-198. https://doi.org/10.1098/rsta.1921.0006
  14. Holland, D. and Marder, M. (1999), "Cracks and atoms", Adv. Mater., 10(11), 793-806.
  15. Honeycutt, J.D. and Andersen, H.C. (1987), "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters", J. Phys. Chem., 91(19), 4950-4963. https://doi.org/10.1021/j100303a014
  16. Hoover, W.G. (1985), "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A, 31, 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  17. Horstemeyer, M.F. and Baskes, M.I. (1999), "Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses", ASME Tran. J. Eng. Mater. Tech., 121, 114-119. https://doi.org/10.1115/1.2812354
  18. Irwin, G.R. (1948), "Fracture dynamics", Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland, OH.
  19. Irwin, G.R. (1956), "Plastic zone near a crack and fracture toughness", Proceedings of the Sagamore Conference on Strength Limitations of Metals, NY Syracuse University Press, 2, 289-305.
  20. Irwin, G.R. (1957), "Analysis of stresses and strain near the end of a crack traversing a plate", Tran. ASME Ser. E: J. Appl. Mech., 24, 361-364.
  21. Jakse, N. and Pasturel, A. (2004), "Ab initio molecular dynamics simulations of local structure of supercooled Ni", J. Chem. Phys., 120(13), 6124-6127. https://doi.org/10.1063/1.1651054
  22. Jonsson, H. and Andersen, H.C. (1988), "Icosahedral ordering in the Lennard-Jones liquid and glass", Phys. Rev. Lett., 60, 2295. https://doi.org/10.1103/PhysRevLett.60.2295
  23. Krull, H. and Yuan, H. (2011), "Suggestions to the cohesive traction-separation law from atomistic simulations", J. Eng. Fract. Mech., 78, 525-533. https://doi.org/10.1016/j.engfracmech.2009.12.014
  24. Kubair, D.V., Geubelle, P.H. (2003), "Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture", Int. J. Solid. Struct., 40, 3853-3868. https://doi.org/10.1016/S0020-7683(03)00171-9
  25. LAMMPS (2013), http://www.cs.sandia.gov/-sjplimp/lammps.html
  26. Li, T.X., Yin, S.Y., Ji, Y.L., Wang, B.L., Wang, G.H. and Zhao, J.J. (2000), "A genetic algorithm study on the most stable disordered and ordered configurations of Au 38-55", Phys. Lett. A, 267(5-6), 403-407. https://doi.org/10.1016/S0375-9601(00)00120-1
  27. Liu, X.Y., Ercolessi, F. and Adams, J.B. (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Model. Simul. Mater. Sci. Eng., 12, 665-670. https://doi.org/10.1088/0965-0393/12/4/007
  28. McClintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes", J. Appl. Mech., 35(2), 363-371. https://doi.org/10.1115/1.3601204
  29. Needleman, A. (1987), "A continuum model for void nucleation by inclusion debonding", J. Appl. Mech., 54, 525-531. https://doi.org/10.1115/1.3173064
  30. Needleman, A. (1990), "An analysis of decohesion along an imperfect interface", Int. J. Fract., 42, 21-40. https://doi.org/10.1007/BF00018611
  31. Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, 511-519. https://doi.org/10.1063/1.447334
  32. Paliwal, B. and Cherkaoui, M. (2013), "An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth", Int. J. Solid. Struct., 50, 3346-3360. https://doi.org/10.1016/j.ijsolstr.2013.06.002
  33. Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  34. Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J. and Gullett, P.M. (2006), "A molecular dynamics study of void growth and coalescence in single crystal nickel", Int. J. Plast., 22, 257-278. https://doi.org/10.1016/j.ijplas.2005.02.001
  35. Ren, G.W., Tang, T.G. and Li, Q.Z. (2012), "Atomistic study of anisotropic effect on two-dimensional dynamic crack", Front. Mater. Sci., 6(1), 87-96. https://doi.org/10.1007/s11706-012-0159-3
  36. Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power-law hardening material", J. Mech. Phys. Solid., 16, 1-12. https://doi.org/10.1016/0022-5096(68)90013-6
  37. Rosch, F., Trebin, H.R. and Gumbsch, P. (2006), "Fracture of complex metallic alloys: An atomistic study of model systems", Phil Mag., 86, 1015-1020. https://doi.org/10.1080/14786430500256326
  38. Le Roy, G., Embury, J.D., Edwards, G. and Ashby, M.F. (1981), "A model of ductile fracture based on the nucleation and growth of voids", Acta Metallurgica, 29, 1509-1522. https://doi.org/10.1016/0001-6160(81)90185-1
  39. Schiotz, J., DiTolla, F.D. and Jacobsen, K.W. (1998b), "Softening of nanocrystalline metals at very small grain sizes", Nature, 391, 561-563. https://doi.org/10.1038/35328
  40. Schiotz, J., Vegge, T., DiTolla, F.D. and Jacobsen, K.W. (1999), "Atomic-scale simulations of the mechanical deformation of nanocrystalline metals", Phys. Rev. B, 60, 11971. https://doi.org/10.1103/PhysRevB.60.11971
  41. Sorensen, M.R., Brandbyge, M. and Jacobsen, K.W. (1998a), "Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms", Phys. Rev. B, 57, 3283. https://doi.org/10.1103/PhysRevB.57.3283
  42. Swope, W.C., Andersen, H.C., Berens, P.H. and Wilson, K.R. (1982), "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters", J. Chem. Phys., 76, 637-649. https://doi.org/10.1063/1.442716
  43. Tai, W.H. and Yang, B.X. (1986), "A new microvoid-damage model for ductile fracture", Eng. Fract. Mech., 25, 377-384. https://doi.org/10.1016/0013-7944(86)90133-5
  44. Thomason, P.F. (1998), "A view on ductile-fracture modelling", Fatig. Fract. Eng. Mater. Struct., 21(9), 1105-1122. https://doi.org/10.1046/j.1460-2695.1998.00077.x
  45. Tomar, V., Zhai, J. and Zhou, M. (2004), "Bounds for element size in a variable stiffness cohesive finite element model", Int. J. Numer. Meth. Eng., 61, 1894-1920. https://doi.org/10.1002/nme.1138
  46. Tvergaard, V. (2001), "Crack growth predictions by cohesive zone model for ductile fracture", J. Mech. Phys. Solid., 49, 2191-2207. https://doi.org/10.1016/S0022-5096(01)00030-8
  47. Westergaard, H.M. (1939), "Bearing pressures and cracks", J. Appl. Mech., 6, 49-53.
  48. Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", Trans. AMSE J. Appl. Mech., 24, 109-114.
  49. Wu, W. and Yao, Z. (2012), "Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel", J. Theo. Appl. Fract. Mech., 62, 67-75. https://doi.org/10.1016/j.tafmec.2013.01.008
  50. Xu, S. and Deng, X. (2008), "Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal", Nanotechnology, 19, 115705. https://doi.org/10.1088/0957-4484/19/11/115705
  51. Xue, L. and Wierzbicki, T. (2008), "Ductile fracture initiation and propagation modeling using damage plasticity theory", J. Eng. Fract. Mech., 75, 3276-3293. https://doi.org/10.1016/j.engfracmech.2007.08.012
  52. Yamakov, V., Saether, E., Phillips, D.R. and Glaessgen, E.H. (2006), "Molecular-dynamics simulationbased cohesive zone representation of intergranular fracture processes in aluminum", J. Mech. Phys. Solid., 54, 1899-1928. https://doi.org/10.1016/j.jmps.2006.03.004
  53. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. and Gleiter, H. (2002), "Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation", Nature Mater., 1(1), 45-49. https://doi.org/10.1038/nmat700
  54. Yavari, A.R., Lewandowski, J.J. and Eckert, J. (2007), "Mechanical properties of bulk metallic glasses", Mrs Bull., 32(08), 635-638. https://doi.org/10.1557/mrs2007.125
  55. Zeng, X. and Li, S. (2010), "A multiscale cohesive zone model and simulations of fractures", Comput. Meth. Appl. Mech. Eng., 199, 547-556. https://doi.org/10.1016/j.cma.2009.10.008
  56. Zhou, X.W., Moody, N.R., Jones, R.E., Zimmerman, J.A. and Reedy, E.D. (2009), "Molecular-dynamicsbased cohesive zone law for brittle interfacial fracture under mixed loading conditions: effects of elastic constant mismatch", Acta Materialia, 57(16), 4671-4686. https://doi.org/10.1016/j.actamat.2009.06.023
  57. Zhou, M. (2003), "A new look at the atomic level virial stress: on continuum-molecular system equivalence", Proc. R. Soc. London A, 459, 2347-2392. https://doi.org/10.1098/rspa.2003.1127
  58. Zhou, X.W., Zimmerman, J.A., Reedy, E.D. and Moody, N.R. (2008), "Molecular dynamics simulation based cohesive surface representation of mixed mode fracture", Mech. Mater., 40, 832-845. https://doi.org/10.1016/j.mechmat.2008.05.001

Cited by

  1. Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation vol.9, pp.2, 2020, https://doi.org/10.12989/anr.2020.9.2.083
  2. Molecular dynamics investigation of pull-in instability in graphene sheet under electrostatic and van der Waals forces vol.11, pp.2, 2015, https://doi.org/10.12989/anr.2021.11.2.173