References
- Seyfried, T.N., Flores, R.E., Poff, A.M. and D'Agostino, D.P. (2014) Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis, 35, 515-527. https://doi.org/10.1093/carcin/bgt480
- Coller, H.A. (2014) Is cancer a metabolic disease? Am. J. Pathol., 184, 4-17. https://doi.org/10.1016/j.ajpath.2013.07.035
- Warburg, O., Wind, F. and Neglers, E. (1930) On the metabolism of tumors in the body in In metabolism of tumors Ed. Arnold Constable and Co. Press, London, pp. 254-270.
- Koppenol, W.H., Bounds, P.L. and Dang, C.V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 11, 325-337. https://doi.org/10.1038/nrc3038
- Crabtree, H.G. (1929) Observations on the carbohydrate metabolism of tumours. Biochem. J., 23, 536-545. https://doi.org/10.1042/bj0230536
- Weinhouse, S. (1956) On respiratory impairment in cancer cells. Science, 124, 267-269. https://doi.org/10.1126/science.124.3215.267
- Senyilmaz, D. and Teleman, A.A. (2015) Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000Prime Rep., 7, 41.
- Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Schwartzenberg-Bar-Yoseph, F., Armoni, M. and Karnieli, E. (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res., 64, 2627-2633. https://doi.org/10.1158/0008-5472.CAN-03-0846
- Zhang, C., Liu, J., Liang, Y., Wu, R., Zhao, Y., Hong, X., Lin, M., Yu, H., Liu, L., Levine, A.J., Hu, W. and Feng, Z. (2013) Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun., 4, 2935. https://doi.org/10.1038/ncomms3935
- Kim, J.W., Gao, P., Liu, Y.C., Semenza, G.L. and Dang, C.V. (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell Biol., 27, 7381-7393. https://doi.org/10.1128/MCB.00440-07
- Kim, J.W., Zeller, K.I., Wang, Y., Jegga, A.G., Aronow, B.J., O'Donnell, K.A. and Dang, C.V. (2004) Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell Biol., 24, 5923-5936. https://doi.org/10.1128/MCB.24.13.5923-5936.2004
- Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K.H. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107-120. https://doi.org/10.1016/j.cell.2006.05.036
- Mikawa, T., Maruyama, T., Okamoto, K., Nakagama, H., Lleonart, M.E., Tsusaka, T., Hori, K., Murakami, I., Izumi, T., Takaori-Kondo, A., Yokode, M., Peters, G., Beach, D. and Kondoh, H. (2014) Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2. J. Cell Biol., 204, 729-745. https://doi.org/10.1083/jcb.201306149
- Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L. and Cantley, L.C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452, 230-233. https://doi.org/10.1038/nature06734
- Zhan, C., Yan, L., Wang, L., Ma, J., Jiang, W., Zhang, Y., Shi, Y. and Wang, Q. (2015) Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis. PLoS One, 10, e0118663. https://doi.org/10.1371/journal.pone.0118663
- Taniguchi, K., Ito, Y., Sugito, N., Kumazaki, M., Shinohara, H., Yamada, N., Nakagawa, Y., Sugiyama, T., Futamura, M., Otsuki, Y., Yoshida, K., Uchiyama, K. and Akao, Y. (2015) Organ-specific PTB1-associated microRNAs determine expression of pyruvate kinase isoforms. Sci. Rep., 5, 8647. https://doi.org/10.1038/srep08647
- David, C.J., Chen, M., Assanah, M., Canoll, P. and Manley, J.L. (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 463, 364-368. https://doi.org/10.1038/nature08697
- Desai, S., Ding, M., Wang, B., Lu, Z., Zhao, Q., Shaw, K., Yung, W.K., Weinstein, J.N., Tan, M. and Yao, J. (2014) Tissue- specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget, 5, 8202-8210. https://doi.org/10.18632/oncotarget.1159
- Xu, X., Li, J., Sun, X., Guo, Y., Chu, D., Wei, L., Li, X., Yang, G., Liu, X., Yao, L., Zhang, J. and Shen, L. (2015) Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression. Oncotarget, 6, 26161-26176. https://doi.org/10.18632/oncotarget.4544
- Draoui, N. and Feron, O. (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis. Models Mech., 4, 727-732. https://doi.org/10.1242/dmm.007724
- Doherty, J.R., Yang, C., Scott, K.E., Cameron, M.D., Fallahi, M., Li, W., Hall, M.A., Amelio, A.L., Mishra, J.K., Li, F., Tortosa, M., Genau, H.M., Rounbehler, R.J., Lu, Y., Dang, C.V., Kumar, K.G., Butler, A.A., Bannister, T.D., Hooper, A.T., Unsal-Kacmaz, K., Roush, W.R. and Cleveland, J.L. (2014) Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res., 74, 908-920. https://doi.org/10.1158/0008-5472.CAN-13-2034
- Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.L., Zamboni, N., Westermann, B., Kunji, E.R. and Martinou, J.C. (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science, 337, 93-96. https://doi.org/10.1126/science.1218530
- Bricker, D.K., Taylor, E.B., Schell, J.C., Orsak, T., Boutron, A., Chen, Y.C., Cox, J.E., Cardon, C.M., Van Vranken, J.G., Dephoure, N., Redin, C., Boudina, S., Gygi, S.P., Brivet, M., Thummel, C.S. and Rutter, J. (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science, 337, 96-100. https://doi.org/10.1126/science.1218099
- Schell, J.C., Olson, K.A., Jiang, L., Hawkins, A.J., Van Vranken, J.G., Xie, J., Egnatchik, R.A., Earl, E.G., DeBerardinis, R.J. and Rutter, J. (2014) A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell, 56, 400-413. https://doi.org/10.1016/j.molcel.2014.09.026
- Sun, X.R., Sun, Z., Zhu, Z., Guan, H.X., Li, C.Y., Zhang, J.Y., Zhang, Y.N., Zhou, H., Zhang, H.J., Xu, H.M. and Sun, M.J. (2015) Expression of pyruvate dehydrogenase is an independent prognostic marker in gastric cancer. World J. Gastroenterol., 21, 5336-5344. https://doi.org/10.3748/wjg.v21.i17.5336
- Hur, H., Xuan, Y., Kim, Y.B., Lee, G., Shim, W., Yun, J., Ham, I.H. and Han, S.U. (2013) Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int. J. Oncol., 42, 44-54. https://doi.org/10.3892/ijo.2012.1687
- Sellers, K., Fox, M.P., Bousamra, M. 2nd, Slone, S.P., Higashi, R.M., Miller, D.M., Wang, Y., Yan, J., Yuneva, M.O., Deshpande, R., Lane, A.N. and Fan, T.W. (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest., 125, 687-698. https://doi.org/10.1172/JCI72873
- Cardaci, S., Zheng, L., MacKay, G., van den Broek, N.J., MacKenzie, E.D., Nixon, C., Stevenson, D., Tumanov, S., Bulusu, V., Kamphorst, J.J., Vazquez, A., Fleming, S., Schiavi, F., Kalna, G., Blyth, K., Strathdee, D. and Gottlieb, E. (2015) Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol., 17, 1317-1326. https://doi.org/10.1038/ncb3233
- Wutthisathapornchai, A., Vongpipatana, T., Muangsawat, S., Boonsaen, T., MacDonald, M.J. and Jitrapakdee, S. (2014) Multiple E-boxes in the distal promoter of the rat pyruvate carboxylase gene function as a glucose-responsive element. PLoS One, 9, e102730. https://doi.org/10.1371/journal.pone.0102730
- Mates, J.M., Segura, J.A., Campos-Sandoval, J.A., Lobo, C., Alonso, L., Alonso, F.J. and Marquez, J. (2009) Glutamine homeostasis and mitochondrial dynamics. Int. J. Biochem. Cell Biol., 41, 2051-2061. https://doi.org/10.1016/j.biocel.2009.03.003
- Cetindis, M., Biegner, T., Munz, A., Teriete, P., Reinert, S. and Grimm, M. (2015) Glutaminolysis and carcinogenesis of oral squamous cell carcinoma. Eur. Arch. Otorhinolaryngol., 1-9. doi:10.1007/s00405-015-3543-7.
- Ren, P., Yue, M., Xiao, D., Xiu, R., Gan, L., Liu, H. and Qing, G. (2015) ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J. Pathol., 235, 90-100. https://doi.org/10.1002/path.4429
- Gao, P., Tchernyshyov, I., Chang, T.C., Lee, Y.S., Kita, K., Ochi, T., Zeller, K.I., De Marzo, A.M., Van Eyk, J.E., Mendell, J.T. and Dang, C.V. (2009) c-Myc suppression of miR- 23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458, 762-765. https://doi.org/10.1038/nature07823
- DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C.B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A., 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104
- Meng, M., Chen, S., Lao, T., Liang, D. and Sang, N. (2010) Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle, 9, 3921-3932. https://doi.org/10.4161/cc.9.19.13139
- Hunnewell, M.G. and Forbes, N.S. (2010) Active and inactive metabolic pathways in tumor spheroids: determination by GCMS. Biotechnol. Prog., 26, 789-796.
- Yoo, H., Stephanopoulos, G. and Kelleher, J.K. (2004) Quantifying carbon sources for de novo lipogenesis in wild-type and IRS-1 knockout brown adipocytes. J. Lipid Res., 45, 1324-1332. https://doi.org/10.1194/jlr.M400031-JLR200
- Parlo, R.A. and Coleman, P.S. (1984) Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J. Biol. Chem., 259, 9997-10003.
- Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., Kelleher, J.K., Vander Heiden, M.G., Iliopoulos, O. and Stephanopoulos, G. (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481, 380-384.
- Wise, D.R., Ward, P.S., Shay, J.E., Cross, J.R., Gruber, J.J., Sachdeva, U.M., Platt, J.M., DeMatteo, R.G., Simon, M.C. and Thompson, C.B. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A., 108, 19611-19616. https://doi.org/10.1073/pnas.1117773108
- Mullen, A.R., Wheaton, W.W., Jin, E.S., Chen, P.H., Sullivan, L.B., Cheng, T., Yang, Y., Linehan, W.M., Chandel, N.S. and DeBerardinis, R.J. (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481, 385-388.
- Rehberg, M., Rath, A., Ritter, J.B., Genzel, Y. and Reichl, U. (2014) Changes in intracellular metabolite pools during growth of adherent MDCK cells in two different media. Appl. Microbiol. Biotechnol., 98, 385-397. https://doi.org/10.1007/s00253-013-5329-4
- Levine, A.J. and Puzio-Kuter, A.M. (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330, 1340-1344. https://doi.org/10.1126/science.1193494
- Leite, T.C., Coelho, R.G., Da Silva, D., Coelho, W.S., Marinho-Carvalho, M.M. and Sola-Penna, M. (2011) Lactate downregulates the glycolytic enzymes hexokinase and phosphofructokinase in diverse tissues from mice. FEBS Lett., 585, 92-98. https://doi.org/10.1016/j.febslet.2010.11.009
- Vander Heiden, M.G., Locasale, J.W., Swanson, K.D., Sharfi, H., Heffron, G.J., Amador-Noguez, D., Christofk, H.R., Wagner, G., Rabinowitz, J.D., Asara, J.M. and Cantley, L.C. (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science, 329, 1492-1499. https://doi.org/10.1126/science.1188015
- Yang, W. and Lu, Z. (2015) Pyruvate kinase M2 at a glance. J. Cell Sci., 128, 1655-1660. https://doi.org/10.1242/jcs.166629
- Hosios, A.M., Fiske, B.P., Gui, D.Y. and Vander Heiden, M.G. (2015) Lack of evidence for PKM2 protein kinase activity. Mol. Cell, 59, 850-857. https://doi.org/10.1016/j.molcel.2015.07.013
- Cairns, R.A., Harris, I.S. and Mak, T.W. (2011) Regulation of cancer cell metabolism. Nat. Rev. Cancer, 11, 85-95. https://doi.org/10.1038/nrc2981
- Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 1029-1033. https://doi.org/10.1126/science.1160809
- Hitosugi, T., Zhou, L., Elf, S., Fan, J., Kang, H.B., Seo, J.H., Shan, C., Dai, Q., Zhang, L., Xie, J., Gu, T.L., Jin, P., Alečkovic, M., LeRoy, G., Kang, Y., Sudderth, J.A., DeBerardinis, R.J., Luan, C.H., Chen, G.Z., Muller, S., Shin, D.M., Owonikoko, T.K., Lonial, S., Arellano, M.L., Khoury, H.J., Khuri, F.R., Lee, B.H., Ye, K., Boggon, T.J., Kang, S., He, C. and Chen, J. (2012) Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell, 22, 585-600. https://doi.org/10.1016/j.ccr.2012.09.020
- Jiang, X., Sun, Q., Li, H., Li, K. and Ren, X. (2014) The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications. Int. J. Cancer, 135, 1991-1996. https://doi.org/10.1002/ijc.28637
- Stine, Z.E. and Dang, C.V. (2013) Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. Crit. Rev. Biochem. Mol. Biol., 48, 609-619. https://doi.org/10.3109/10409238.2013.844093
- Hirayama, A., Kami, K., Sugimoto, M., Sugawara, M., Toki, N., Onozuka, H., Kinoshita, T., Saito, N., Ochiai, A., Tomita, M., Esumi, H. and Soga, T. (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res., 69, 4918-4925. https://doi.org/10.1158/0008-5472.CAN-08-4806
- Berg, J., Tymoczko, J. and Stryer, L. (2002) Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled in Biochemistry Ed. New York.
- Fang, M., Shen, Z., Huang, S., Zhao, L., Chen, S., Mak, T.W. and Wang, X. (2010) The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell, 143, 711-724. https://doi.org/10.1016/j.cell.2010.10.010
- Shirato, K., Nakajima, K., Korekane, H., Takamatsu, S., Gao, C., Angata, T., Ohtsubo, K. and Taniguchi, N. (2011) Hypoxic regulation of glycosylation via the N-acetylglucosamine cycle. J. Clin. Biochem. Nutr., 48, 20-25.
- Israelsen, W.J. and Vander Heiden, M.G. (2010) ATP consumption promotes cancer metabolism. Cell, 143, 669-671. https://doi.org/10.1016/j.cell.2010.11.010
- Berg, J., Tymoczko, J. and Stryer, L. (2002) Oxidative Phosphorylation in Biochemistry Ed. New York.
- Bagkos, G., Koufopoulos, K. and Piperi, C. (2015) Mitochondrial emitted electromagnetic signals mediate retrograde signaling. Med. Hypotheses, 85, 810-818. https://doi.org/10.1016/j.mehy.2015.10.004
- Sullivan, L.B., Gui, D.Y., Hosios, A.M., Bush, L.N., Freinkman, E. and Vander Heiden, M.G. (2015) Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell, 162, 552-563. https://doi.org/10.1016/j.cell.2015.07.017
- Birsoy, K., Wang, T., Chen, W.W., Freinkman, E., Abu- Remaileh, M. and Sabatini, D.M. (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 162, 540-551. https://doi.org/10.1016/j.cell.2015.07.016
- Krebs, H.A. and Johnson, W.A. (1937) Metabolism of ketonic acids in animal tissues. Biochem. J., 31, 645-660. https://doi.org/10.1042/bj0310645
- Pagliarini, D.J. and Rutter, J. (2013) Hallmarks of a new era in mitochondrial biochemistry. Genes Dev., 27, 2615-2627. https://doi.org/10.1101/gad.229724.113
Cited by
- Mitochondrial Redox Signaling and Tumor Progression vol.8, pp.4, 2016, https://doi.org/10.3390/cancers8040040
- Triphenyl Phosphine-Functionalized Chitosan Nanoparticles Enhanced Antitumor Efficiency Through Targeted Delivery of Doxorubicin to Mitochondria vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-017-1931-1
- Press-pulse: a novel therapeutic strategy for the metabolic management of cancer vol.14, pp.1, 2017, https://doi.org/10.1186/s12986-017-0178-2
- Reduced mitochondrial activity in colonocytes facilitates AMPKα2-dependent inflammation vol.31, pp.5, 2017, https://doi.org/10.1096/fj.201600976R
- Nontoxic Targeting of Energy Metabolism in Preclinical VM-M3 Experimental Glioblastoma vol.5, pp.2296-861X, 2018, https://doi.org/10.3389/fnut.2018.00091