DOI QR코드

DOI QR Code

Evaluation of Factors Related to Productivity and Yield Estimation Based on Growth Characteristics and Growing Degree Days in Highland Kimchi Cabbage

고랭지배추 생산성 관련요인 평가 및 생육량과 생육도일에 의한 수량예측

  • Kim, Ki-Deog (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Suh, Jong-Taek (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Lee, Jong-Nam (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Yoo, Dong-Lim (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Kwon, Min (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Hong, Soon-Choon (Highland Agriculture Research Institute, National Institute of Crop Science)
  • 김기덕 (국립식량과학원 고령지농업연구소) ;
  • 서종택 (국립식량과학원 고령지농업연구소) ;
  • 이종남 (국립식량과학원 고령지농업연구소) ;
  • 유동림 (국립식량과학원 고령지농업연구소) ;
  • 권민 (국립식량과학원 고령지농업연구소) ;
  • 홍순춘 (국립식량과학원 고령지농업연구소)
  • Received : 2015.04.22
  • Accepted : 2015.07.16
  • Published : 2015.12.31

Abstract

This study was carried out to evaluate growth characteristics of Kimchi cabbage cultivated in various highland areas, and to create a predicting model for the production of highland Kimchi cabbage based on the growth parameters and climatic elements. Regression model for the estimation of head weight was designed with non-destructive measured growth variables (NDGV) such as leaf length (LL), leaf width (LW), head height (HH), head width (HW), and growing degree days (GDD), which was $y=6897.5-3.57{\times}GDD-136{\times}LW+116{\times}PH+155{\times}HH-423{\times}HW+0.28{\times}HH{\times}HW{\times}HW$, ($r^2=0.989$), and was improved by using compensation terms such as the ratio (LW estimated with GDD/measured LW ), leaf growth rate by soil moisture, and relative growth rate of leaf during drought period. In addition, we proposed Excel spreadsheet model for simulation of yield prediction of highland Kimchi cabbage. This Excel spreadsheet was composed four different sheets; growth data sheet measured at famer's field, daily average temperature data sheet for calculating GDD, soil moisture content data sheet for evaluating the soil water effect on leaf growth, and equation sheet for simulating the estimation of production. This Excel spreadsheet model can be practically used for predicting the production of highland Kimchi cabbage, which was calculated by (acreage of cultivation) ${\times}$ (number of plants) ${\times}$ (head weight estimated with growth variables and GDD) ${\times}$ (compensation terms derived relationship of GDD and growth by soil moisture) ${\times}$ (marketable head rate).

본 연구는 고랭지배추의 생산성에 관여하는 주요 요인을 분석하고, 실시간 계측한 생육 및 기상자료를 기반으로 고랭지배추의 수량을 예측하기 위한 모델을 개발하기 위하여 수행되었다. 먼저 수확 시의 전생육량변수에 의한 구중 추정식과 비파괴 측정 생육량 변수에 의한 추정식에 의한 설명력의 차이를 비교한 다음, 이를 보완하기 위하여 비파괴측정 생육량 변수에 생육도일(growing degree days, GDD)을 포함한 구중추정 회귀모형을 작성하고, 이 구중추정식을 GDD에 의한 엽생장량과 실측 생장량의 비, 토양수분에 따른 생육속도, 그리고 생장단계 및 기간에 따른 상대생장률을 적용하여 보정하였다. 비파괴 생육량과 GDD에 의한 구중 추정식은 y = 6897.5 - 3.57 ${\times}$ GDD - 136 ${\times}$ 엽폭 + 116 ${\times}$ 초고 + 155 ${\times}$ 구고 - 423 ${\times}$ 구폭 + 0.28 ${\times}$ 구고 ${\times}$ 구폭${\times}$ 구폭($r^2=0.989$)로 나타났다. 수량 산정을 위한 엑셀스프레드시트모형을 작성하였으며, 이 모형은 고랭지배추 실시간 생육data 시트, GDD 계산을 위한 일별 온도data 시트, 재배지 토양수분data 시트, 그리고 도출된 모형방정식에 병해충 및 재배관리에 의한 수시변동 변량과 보정값을 입력하여 단수를 산정하는 시트로 구성되어 있다. 작성된 엑셀스프레드시트 모형을 이용하여 재배면적 ${\times}$ 단위당 재식주수 ${\times}$ GDD와 비파괴 생육량에 근거한 예측구중 ${\times}$ GDD도입 보정값 ${\times}$ 토양수분 및 건조기간에 따른 보정값 ${\times}$ 상품률을 적용하여 권역별 수량을 산정하고 이들을 합산하여 고랭지배추의 총 생산량을 예측할 수 있을 것으로 판단되었다.

Keywords

References

  1. Ahn, J.H., K.D. Kim, and J.T. Lee. 2014. Growth modeling of Chinese cabbage in an alpine area. Korean Journal of Agricultural and Forest Meteorology 16:309-314 (in Korean). https://doi.org/10.5532/KJAFM.2014.16.4.309
  2. Han, S.H., B.H. Lee, M.S. Park, J.H. Seung, H.S. Yang, and S.C. Shin. 2011. A study of building crop yield forecasting model considering metoerological elements. KREI P 152:1-96 (in Korean).
  3. Choi, S.J., A. S. Lee, S.J. Jeon, K.D. Kim, M.C. Seo, W.S. Jung, J. H. Maeng, and I.J. Kim. 2014. Estimating the yield of potato non-mulched using climatic elements. Korean J. Crop Sci. 59:89-96 (in Korean). https://doi.org/10.7740/kjcs.2014.59.1.089
  4. HARI. 2000. Vegetable cultivation technology in highland. p. 52-53 (in Korean).
  5. Hoogenboom, G. 2000. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. For. Meteorol. 103:137-157. https://doi.org/10.1016/S0168-1923(00)00108-8
  6. Kalisz, A., J. Kostrzewa, A. Sękara, A. Grabowska, and S. Cebula. 2012. Yield and nutritional quality of several non-heading Chinese cabbage (Brassica rapa var. chinensis) cultivars with different growing period and its modelling. Korean J. Hortic. Sci. Technol. 30:650-656. https://doi.org/10.7235/hort.2012.12108
  7. Kim, E.H. 1992. Effects of climatic elements on soybean yields. Korean J. Crop Sci. 37:320-328 (in Korean).
  8. Kim, I.G., K.J. Park, and B.J. Kim. 2013. Analysis of meteorological factors on yield of Chinese cabbage and radish in winter cropping system. Korean Journal of Agricultural and Forest Meteorology 15:59-66 (in Korean). https://doi.org/10.5532/KJAFM.2013.15.2.059
  9. Kim, Y.J., B.S. Kim, S.W. Song, and Y.G. Park. 2006. The seasonal cabbage model. KREI W28. p. 17-33 (in Korean).
  10. Lee, C.S., G.J. Lee, J.T. Lee, K.Y. Shin, J.H. Ahn, and H.J. Cho. 2002. Status of fertilizer applications in farmers' field for summer Chinese cabbage in highland. Korean J. Soil Sci. Fert. 34:306-313 (in Korean).
  11. Lee, J.W. 1996. An study of decision-making factors of production for radish and Chinese cabbage. KREI R346:39-67 (in Korean).
  12. Lee, S.K. T.C. Seo, Y.A. Jang, J.G. Lee, C.W. Nam, C.S. Choi, K.W. Yeo, and Y.C. Um. 2012. Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. J. Bio-Environ. Control 21:271-275 (in Korean).
  13. MAFF (Ministry of Agriculture, Forestry and Fisheries). 2003. Development of production technology of high quality stable production and control of bacterial soft rot of Chinese cabbage in alpine region. The Reseach Report. p. 22-66 (in Korean).
  14. MAFRA. 2014. Current status of vegetable greenhouse and production of vegetables in 2013 (in Korean).
  15. Mallow, C.L. 1973. Some comments on Cp. Technometrics 15. 661-675.
  16. Monteith, J. and C Moss. 1977. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc., B 281:277-294. https://doi.org/10.1098/rstb.1977.0140
  17. Moon, K.H., E.Y. Song, I.C. Son, S.J. Oh, and K.S. Park. 2014. Simple growth model of Chinese cabbage using radiation use efficiency. Korean Journal of Agricultural and Forest Meteorology (Suppl.). p. 133-136 (in Korean).
  18. Park, J.Y., T.H. Kim, and Y.G. Park. 2014. Why are highland Chinese cabbage got reduced? Agriculture Outlook 2014. p. 499-514 (in Korean).
  19. Park, K.Y. 1988. Modeling for predicting yield and $\alpha$-acid content in hop (Humulus inpulus L.) from meteorological elements. Korean J. Crop Sci. 33:215-221(in Korean).
  20. Radford, P.J. 1967. Growth analysis formulae-their use and abuse. Crop Sci. 7:171-175. https://doi.org/10.2135/cropsci1967.0011183X000700030001x
  21. Sammis, T., and I.P. Wu. 1989. Deficit irrigation effects on head cabbage production. Agric. Water Manage. 16:229-239. https://doi.org/10.1016/0378-3774(89)90005-X
  22. Weng, J.H., Y.P. Hsu, F.Y. Kuo, and W.J. Lin. 1999. Effects of climatic factors on the growth rate of pak-choi. Chinese J. Agrometeorol. 6:7-14 (in Chinese).

Cited by

  1. Impacts of climate change on the growth, morphological and physiological responses, and yield of Kimchi cabbage leaves vol.57, pp.5, 2016, https://doi.org/10.1007/s13580-016-1163-9
  2. Optimizing growth conditions for glucosinolate production in Chinese cabbage vol.59, pp.5, 2018, https://doi.org/10.1007/s13580-018-0084-1
  3. A Yield Estimation Model of Forage Rye Based on Climate Data by Locations in South Korea Using General Linear Model vol.36, pp.3, 2015, https://doi.org/10.5333/kgfs.2016.36.3.205
  4. Characteristics of UAV Aerial Images for Monitoring of Highland Kimchi Cabbage vol.50, pp.3, 2015, https://doi.org/10.7745/kjssf.2017.50.3.162
  5. 재배시기, 정식일에 따른 배추의 생육 모델 개발 및 생산량 예측 평가 vol.26, pp.4, 2015, https://doi.org/10.12791/ksbec.2017.26.4.235
  6. 무인비행체 영상을 활용한 고랭지배추 정식시기 추정 vol.59, pp.6, 2017, https://doi.org/10.5389/ksae.2017.59.6.039
  7. 생육도일(GDDs)에 따른 '춘광' 봄배추의 적정 재배 작기 예측 vol.20, pp.2, 2015, https://doi.org/10.5532/kjafm.2018.20.2.175
  8. 온도와 접종밀도가 클로버씨스트선충의 증식에 미치는 영향 vol.58, pp.1, 2015, https://doi.org/10.5656/ksae.2019.02.0.010
  9. 기상 및 토양정보가 고랭지배추 단수예측에 미치는 영향 vol.28, pp.8, 2015, https://doi.org/10.5322/jesi.2019.28.8.701