DOI QR코드

DOI QR Code

저면공급한 규소에 의한 포인세티아의 광합성 능력 향상과 고온 스트레스 경감

Silicon Supply through Subirrigation System Alleviates High Temperature Stress in Poinsettia by Enhancing Photosynthetic Rate

  • 손문숙 (경상대학교 대학원 응용생명과학부(BK21 Plus) 원예학과) ;
  • 박유경 (경상대학교 농업생명과학연구원) ;
  • ;
  • 고충호 (경상대학교 대학원 응용생명과학부(BK21 Plus) 원예학과) ;
  • 정병룡 (경상대학교 대학원 응용생명과학부(BK21 Plus) 원예학과)
  • Son, Moon Sook (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University) ;
  • Park, Yoo Gyeong (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Sivanesan, Iyyakkannu (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Ko, Chung Ho (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University)
  • 투고 : 2015.06.12
  • 심사 : 2015.08.04
  • 발행 : 2015.12.31

초록

본 연구는 고온 스트레스에서 규소가 분화용 포인세티아(Euphorbia pulcherrima Willd. 'Ichiban')의 내고온성과 생장에 미치는 영향을 조사하였다. 포인세티아를 삽목하여 발근된 삽목묘 중 균일한 개체를 선발하여 상토가 담긴 10cm 화분에 정식하였다. 세 가지 규산염($K_2SiO_3$, $Na_2SiO_3$, $CaSiO_3$)을 0(-Si), 또는 $50(+Si)mg{\cdot}L^{-1}$ Si농도로 순환식 저면베드에서 저면관수 또는 엽면살포 방식으로 약 2개월간 재배하였다. 포인세티아의 고온 스트레스에 대한 저항성을 알아보기 위하여 규소 처리 8주째에 식물생장상의 온도를 $35^{\circ}C$로 조절하여 18일동안 재배하였다. 모든 규산염처리에서 효소적 항산화 효소인 APX의 활성이 증가하였고, 비효소적 항산화 효소인 ELP의 활성은 감소하였다. 저면으로 공급한 $K_2SiO_3$$Na_2SiO_3$처리에서 대조구에 비해 Fv/Fm, 광합성율, 규소함량이 증가하였다. 따라서 규산염 처리가 대조구보다 고온 스트레스에 의해 발생하는 생장의 저해가 적었으며, 특히 저면으로 $K_2SiO_3$$Na_2SiO_3$를 공급하였을 때 가장 효과적이었다.

The effect of Si supplied during plant cultivation on tolerance to high temperature stress in Euphorbia pulcherrima Willd. 'Ichiban' was investigated. Rooted cuttings were transplanted into 10-cm pots and a complete nutrient solution, containing 0 or $50mg{\cdot}L^{-1}$ Si as either $K_2SiO_3$, $Na_2SiO_3$, or $CaSiO_3$, was supplied through subirrigation or weekly foliar applications. After two months of cultivation, plants were placed in an environment-controlled chamber and subjected to $35{\pm}1^{\circ}C$ (high temperature) conditions for 18 days. Enhanced specific activities of enzymatic antioxidants (APX) and suppressed specific activities of non-enzymatic antioxidants (ELP) were observed in the high temperature-stressed plants with Si application. The Fv/Fm (maximum quantum yield of photosystem II), photosynthetic rate, and Si contents in the shoot increased in the treatments of $K_2SiO_3$ and $Na_2SiO_3$ supplied through subirrigation. The Si-treated plants had more tolerance of high temperature stress than the control plants. Of the Si sources and application methods tested, $K_2SiO_3$ and $Na_2SiO_3$ supplied through subirrigation were found to be the most effective in enhancing tolerance to high temperature stress.

키워드

참고문헌

  1. Aebi, H. 1984. Catalase in vitro. Method. Enzymol. 105:121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Agarie, S., N. Hanaoka, O. Ueno, A. Miyazaki, F. Kubota, W. Agata, and P.B. Kaufman. 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96-103. https://doi.org/10.1626/pps.1.96
  3. Bannister, J.V., W.H. Bannister, and G. Rotilio. 1987. Aspects of the structure, function, and applications of superoxide dismutase. Crit. Rev. Biochem. Mol. Biol. 22:111-180. https://doi.org/10.3109/10409238709083738
  4. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: Improved assay applicable to acrylamide gels. Anal. Biochem. 44:276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  5. Bowler, C., M. van Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Biol. 43:83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  6. Chen, G.X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987-998.
  7. Choi, Y.H., J.S. Kang, J.K. Kwon, J.H. Lee, N.J. Kang, and M.W. Cho. 2004. Effect of night and daytime temperatures on growth and yield of paprika 'Fiesta' and 'Jubilee'. J Bio-Environ. Con. 13:226-232.
  8. Chung, Y.M., H.J. Shin, S.Y. Park, D.C. An, B.G. Son, Y.C. Cho, and O.C. Kwon. 2007. Effect of plant growth regulations on production of good quality plant for Korean gerbera lines. J. Life Sci. 17:831-835. https://doi.org/10.5352/JLS.2007.17.6.831
  9. Cordi, B., M.H. Depledge, D.N. Price, L.F. Salter, and M.E. Donkin. 1997. Evaluation of chlorophyll fluorescence, in vivo spectrophotometric pigment absorption and ion leakage as biomarkers of UV-B exposure in marine macroalgae. Mar. Biol. 130:41-49. https://doi.org/10.1007/s002270050223
  10. Epstein, E. 1999. Silicon. Annu. Rev. Plant Biol. 50:641-664.
  11. Fridovich, I. 1991. Molecular oxygen: Friend and foe, p. 1-5. In: E.J. Pell and K.L. Steffen (eds.). Active oxygen/oxidative stress and plant metabolism. Amer. Soc. Plant Physiol. Rockville, MD, USA.
  12. Guevel, M.H., J.G. Menzies, and R.R. Belanger. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 119:429-436. https://doi.org/10.1007/s10658-007-9181-1
  13. Jones, L.H.P. and K.A. Handreck. 1967. Silica in soil, plants and animals. Adv. Agron. 19:107-149. https://doi.org/10.1016/S0065-2113(08)60734-8
  14. Kang, K.S., C.J. Lim, T.J. Han, J.C. Kim, and C.D. Jin. 1998. Activation of ascorbate-glutathione cycle in Arabidopsis leaves in responses to aminotriazol. J. Plant Biol. 41:155-161.
  15. Kim, S.G., K.W. Kim, E.W. Park, and D. Choi. 2002. Siliconinduced cell wall fortification of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095-1103. https://doi.org/10.1094/PHYTO.2002.92.10.1095
  16. Kooten, O. and J.F.H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147-150. https://doi.org/10.1007/BF00033156
  17. Lavorel, J. and A.L. Etienne. 1977. In vivo chlorophyll fluorescence, p. 203-268. In: J. Barber (ed.). Primary processes of photosynthesis. Elsevier Sci. Pub., Amsterdam.
  18. Lutts, S., J.M. Kinet, and J. Bouharmont. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. Expt. Bot. 46:1843-1852. https://doi.org/10.1093/jxb/46.12.1843
  19. Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, and M. Katsuhara. 2006. A silicon transporter in rice. Nature 440: 688-691. https://doi.org/10.1038/nature04590
  20. Marschner, H. 2003. Beneficial mineral elements, p. 405-435. In: H. Marschner (ed.). Mineral nutrition of higher plant. 2nd ed. Academic Press, Amsterdam.
  21. Marschner, H., H. Oberle, I. Cakmak, and V. Romgeld. 1990. Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorous and zinc supply. Plant Soil 124:211-219. https://doi.org/10.1007/BF00009262
  22. Matoh, T., P. Kairusmee, and E. Takahashi. 1986. Salt induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr. 32:295-304. https://doi.org/10.1080/00380768.1986.10557506
  23. Monk, L.S., K.V. Fagerstedt, and R.M.M. Crawford. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76:456-459. https://doi.org/10.1111/j.1399-3054.1989.tb06219.x
  24. Muneer, S., Y.G. Park, A. Manivannan, P. Soundararajan, and B.R. Jeong. 2014. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int. J. Mol. Sci. 15:21803-21824. https://doi.org/10.3390/ijms151221803
  25. Park, Y.G., I. Sivanesan, and B.R. Jeong. 2013. Effect of silicon source and application method on growth and development, and incidence of powdery mildew (Sphaerotheca pannosa var. rosae) in potted Rosa hybrida 'Apollo' and 'Remata'. Flowers Res. J. 21:56-62. https://doi.org/10.11623/frj.2013.21.2.15
  26. Sadasivam, S. and A. Manickam. 1996. Enzymes, p. 121-124. In: S. Sadasivam and A. Manickam (eds.). Biochemical methods. New Age International Publishers, New Delhi.
  27. Samuels, A.L., A.D.M. Glass, D.L. Ehret, and J.G. Menzies. 1991. Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Can. J. Bot. 69:140-146. https://doi.org/10.1139/b91-020
  28. Sangster, A.G., M.J. Hodson, and H.J. Tubb. 2001. Silicon deposition in higher plants, p. 85-114. In: L.E. Datnoff, G.H. Snyder, and G.H. Korndorfer (eds.). Silicon in agriculture. Elsevier Science, New York.
  29. Sivanesan, I., J.Y. Song, S.J. Hwang, and B.R. Jeong. 2011. Micropropagation of Cotoneaster wilsonii Nakai - A rare endemic ornamental plant. Plant Cell Tiss. Organ Cult. 105:55-63. https://doi.org/10.1007/s11240-010-9841-2
  30. Son, M.S., H.J. Oh, J.Y. Song, M.Y.Lim, I. Sivanesan, and B.R. Jeong. 2012. Effect of silicon source and application method on growth of kalanchoe 'Peperu'. Korean J. Hortic. Sci. Technol. 30:250-255. https://doi.org/10.7235/hort.2012.11097
  31. Song, J.Y. 2012. Genetic transformation of chrysanthemum for enhanced silicon uptake. PhD. Diss., Gyeongsang Natl. Univ., Jinju, Korea.

피인용 문헌

  1. Silicon application during vegetative propagation affects photosynthetic protein expression in strawberry vol.59, pp.2, 2018, https://doi.org/10.1007/s13580-018-0022-2