DOI QR코드

DOI QR Code

pH Variance Model Depending on Phosphate Ion Form

인산염 이온 형태에 의한 pH 변량 모형

  • Soh, Jae-Woo (Department of Controlled Agriculture, Kangwon National University) ;
  • Soh, Soon-Yil (Department of Horticulture, University of Sahmyook) ;
  • Nam, Sang-Yong (Department of Horticulture, University of Sahmyook)
  • Received : 2015.03.30
  • Accepted : 2015.07.24
  • Published : 2015.12.31

Abstract

This experiment was performed to develop a model for nutrition ion concentration and EC in regard to change in pH from 4.0 to 8.0 in nutrient solution. The pH changes according to the variation of $HPO_4{^{-2}}$ and $H_2PO_4{^-}$ in the nutrient solution while variation of EC increased from pH 4.0 to 5.0, stabilized from pH 5.0 to 7.0 and increased again from pH 7.0 to 8.0. For the variance of major elements in the nutrient solution, K, Ca, N and P increased while pH was higher, especially the variables for K and P were increased largely. On the other hand, variables of Mg and S were stable. Based on analysis of the ion balance model of nutrient solution, the cation increased than anion over rising the variation of pH while balance point of ion moved from a-side to d-side. In addition, the imbalance increased while it moved away from the EC centerline as variance of pH increased. It was larger than effect of EC variance to correction values of equivalence ratios of K and Ca about variation of $HPO_4{^{-2}}$ and $H_2PO_4{^-}$ while as variance of pH increased, K decreased but Ca increased. These showed the result that variance of pH about correction values of equivalence ratios of K and Ca gave a second-degree polynomial model rating of 0.97. Through this research, it was identified the pH variable model about variance among pH, ion and EC according to gradient of phosphate.

본 시험은 배양액 내 pH 변화에 따른 이온과 EC의 모형을 구명하고자 수행하였다. 배양액 내 $HPO_4{^{-2}}$$H_2PO_4{^-}$의 변량에 따른 pH가 변하는데, pH 4.0-5.0은 EC의 변량이 상승하고, pH 5.0-7.0은 EC의 변량이 완만하고, pH 7.0-8.0은 다시 상승하였다. 배양액 내 다량원소의 변량을 보면, pH가 상승할수록 K, Ca, N, P의 이온 농도도 증가하는데, 특히 K과 P의 변량이 크게 나타났다. 반면 Mg와 S의 변량은 일정하게 유지되었다. 배양액의 IBM(ion balance model)에 따른 분석에서, EC의 변량은 크게 변하지 않고, 이온의 균형점이 a분면에서 d분면으로 이동하면 pH가 상승하면서 음이온 보다 양이온이 증가하는 것으로 나타났다. 또한 pH 변량이 높을수록 EC 중앙선으로부터 멀어져 배양액의 이온 불균형이 증가되었다. $HPO_4{^{-2}}$$H_2PO_4{^-}$의 변량에 대한 K와 Ca의 당량비 보정은 pH가 증가할수록 K는 감소하지만 Ca는 증가하였고, EC 변량의 영향보다 큰 것으로 나타났다. K와 Ca의 당량비 보정에 따른 pH 변량은 0.97의 이차 다항식 상관모형을 나타냈다. 본 연구를 통해 인산염의 구배에 따른 pH, 이온, EC의 변량에 대하여 pH 변량 모형이 구명되었다.

Keywords

References

  1. Ahn, T.I., J.W. Shin, and J.E. Son. 2010. Analysis of changes in ion concentration with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annuum L. 'Boogie'). J. Bio-Environ. Cont. 19:298-304.
  2. De Rijck G. and E. Schrevens. 1997. pH Influenced by the elemental composition of nutrient solutions. J. Plant Nutr. 20:911-923. https://doi.org/10.1080/01904169709365305
  3. De Rijck G. and E. Schrevens. 1998. Cationic speciation in nutrient solutions as a function of pH. J. Plant Nutr. 21:861-870. https://doi.org/10.1080/01904169809365449
  4. De Rijck G. and E. Schrevens. 1999. Anion speciation in nutrient solutions as a function of pH. J. Plant Nutr. 22:269-279. https://doi.org/10.1080/01904169909365625
  5. Dysko, J., S. Kaniszewski, and W. Kowalczyk. 2008. The Effect of nutrient solution pH on phosphorus availability in soilless culture of tomato. J. Elementology 13:189-198.
  6. Masuda, M., T. Takiguchi, and S. Matsubara. 1989. Yield and quality of tomato fruits, and changes of mineral concentration in different strengths of nutrient solution. J. Jpn. Soc. Hortic.Sci. 58:641-648. https://doi.org/10.2503/jjshs.58.641
  7. Robinson, R.A. and R.H. Stokes. 1959. Electrolyte solutions. Courier Dover Publications, London.
  8. Rush, J.B. 2005. Hydroponics - A practical guide for the soilless grower. CRC press. p. 63-115.
  9. Soh J.W. and Y.B. Lee. 2012. Estimated EC by the total amount of equivalent ion and ion balance model. Korean J. Hortic. Sci. Technol. 30:694-699. https://doi.org/10.7235/hort.2012.12153
  10. Soh, J.W., K.S. Han, S.C. Lee, J.S. Lee, O.D. Kwon, and Y.B. Lee. 2012. Design of model of ion and electric conductivity. J. Bio-Environ. Cont. (Suppl. 2):133-134. (Abstr.)
  11. Steiner, A.A. 1961. A universal method for preparing nutrient solutions of certain desired compositions. Plant Soil 15:134-154. https://doi.org/10.1007/BF01347224
  12. Steiner, A.A. 1980. The selective capacity of plants for ions and its importance for the composition and treatment of the nutrient solution. Acta Hortic. 98:87-97.
  13. Steiner, A.A. 1984. The universal nutrient solution, Proceedings of IWOSC 1984 6th International Congress on Soilless Culture. p. 633-650.
  14. Tanji, K.K. 1960. Predicting specific conductance from electrolytic properties and ion association in some aqueous solution. Soil Sci. Soc. Am. Proc. 33:887-889.
  15. Trejo-Tellez, L.I. and F.C. Gomez-Merino. 2012. Nutrient solutions for hydroponic systems, p. 1-22. In: Toshiki A. (ed). Hydroponics - A standard methodology for plant biological researches. InTech, Janeza Trdine 9, 51000 Rijeka, Croatia.