DOI QR코드

DOI QR Code

Effects of Vernalization, Temperature, and Soil Drying Periods on the Growth and Yield of Chinese Cabbage

춘화, 온도와 토양건조 기간에 따른 배추의 생장 및 수량

  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Sung Kyeom (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Choi, Chang Sun (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Park, Sung Tae (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Jang, Yoon Ah (Urban Agriculture Research Team, National Institute of Horticultural & Herbal Science) ;
  • Do, Kyung Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science)
  • 이상규 (국립원예특작과학원 채소과) ;
  • 이희주 (국립원예특작과학원 채소과) ;
  • 김성겸 (국립원예특작과학원 채소과) ;
  • 최장선 (국립원예특작과학원 채소과) ;
  • 박성태 (국립원예특작과학원 채소과) ;
  • 장윤아 (국립원예특작과학원 도시농업팀) ;
  • 도경란 (국립원예특작과학원 과수과)
  • Received : 2015.05.04
  • Accepted : 2015.07.16
  • Published : 2015.12.31

Abstract

This study was carried out to determine the effects of vernalization, temperature, and soil water deficit (SD) on mesophyll cells, growth, and yield of Chinese cabbage (Brassica campestris L). The palisade parenchyma and spongy tissues of Chinese cabbage were observed under full irrigation and two weeks of SD treatment. These cells were severely collapsed by four weeks SD treatment. The SD treatment had the greatest influence on the growth of Chinese cabbage among the tested treatment factors (vernalization, temperature, and SD), growth significantly decreased by severe drought treatment (four weeks SD treatment). In addition, the relative growth rate, unit leaf rate, leaf area ratio, specific leaf area, and leaf weight ratio were significantly affected by SD treatment; however, other individual factors and their combined treatments did not influence the analyzed growth parameters. The yield under vernalization after high temperature and full irrigation treatments was 3,056 kg/10 a, which was the greatest among all the tested treatments, while four-week SD treatment significantly reduced the yield. Head formation of Chinese cabbage was not altered under SD treatment, and vernalization treatments did not induce bolting. Our results indicated that collapsing mesophyll cells and reduced growth and yield were induced by SD treatment. Thus we suggest that optimal irrigation system should be install to avoid or overcome crippling drought conditions in the open field.

본 연구는 여름철 배추재배시 안정적인 생산을 위한 몇가지 조건을 알아보기 위하여 춘화처리, 재배 기간 동안 온도처리, 토양수분 결핍 처리에 따른 배추의 엽육조직, 생장 및 수량에 미치는 영향을 구명하고자 실시하였다. 토양수분 결핍 2주 처리구에서는 울타리조직과 해면조직의 세포구조를 확인할 수 있었으나, 토양수분 결핍 4주 처리구에서는 세포조직이 완전히 붕괴되었다. 토양수분 결핍 처리가 가장 배추의 생장에 통계적으로 유의하게 영향을 크게 미쳤고, 배추의 생장은 토양수분 결핍 4주 처리구들에서 전반적으로 낮은 경향을 보였다. 토양수분 결핍처리는 배추의 상대생장률, 단위 엽건물중 증가율, 엽면적비율 및 비엽중, 및 엽중률에서 통계적으로 유의하게 효과가 인정되었다. 배추의 수량은 춘화처리 후 고온에서 충분히 관수한 처리구에서 가장 많았으며, 토양수분 결핍 4주 처리구들의 수량이 다른 처리구들에 비하여 유의하게 적었다. 배추 수확시 결구력은 토양수분 결핍 처리구에서 중이하로 나타나 심한 가뭄에 의한 식물체내 수분 부족은 결구력을 약화시키는 것으로 나타났다. 배추에서 문제가 되는 추대는 정식 초기에 저온처리후 고온으로 관리하여도 추대가 발생하지 않았다. 여름철 고온기 배추재배시 2주 동안 가뭄이 지속되면 엽육조직이 붕괴가 시작되고 생장이 지연되어 수확량이 줄어들기 때문에 적극적으로 관수해야 할 것으로 판단된다.

Keywords

References

  1. Chang, S.C. 1973. Compounding of Luft's epon embedding medium for use in electron microscopy with reference to anhydride: Epoxide ratio adjustment. Mikroskopie 29:337-342.
  2. Dorange, G. and M. Le. Pennec. 1989. Ultrastructural characteristics of spermatogenesis in Pecten maximus (Mollusca: Bivalvia). Invertebr. Reprod. Dev. 15:109-117. https://doi.org/10.1080/07924259.1989.9672031
  3. Galmes, J., J. Cifre, H. Medrano, and J. Flexas. 2005. Modulation of relative growth rate and its components by water stress in Mediterranean species with different growth forms. Oecologia 145:21-31. https://doi.org/10.1007/s00442-005-0106-4
  4. Ghassemi-Golezani, K., S. Ghanehpoor, and A.D. Mohammadi-Nasab. 2009. Effects of water limitation on growth and grain filling of faba bean cultivars. J. Food Agric. Environ. 7:442-447.
  5. Habibi, G. 2014. Silicon supplementation improves drought tolerance in canola plants. Russ. J. Plant Physiol. 61:784-791. https://doi.org/10.1134/S1021443714060077
  6. Hajiboland, R. and H. Amirazad. 2010. Drought tolerance in Zn-deficient red cabbage (Brassica oleracea L. var. capitata f. rubra) plants. Hortic. Sci. 37:88-98. https://doi.org/10.17221/64/2009-HORTSCI
  7. Hashem, A., M.N.A. Majumdar, A. Hamid, and M.M. Hossain. 1998. Drought stress effects on seed yield, yield attributes, growth, cell membrane stability and gas exchange of synthesized Brassica napus L. J. Agron. Crop Sci. 180:129-136. https://doi.org/10.1111/j.1439-037X.1998.tb00382.x
  8. Hayat, S., A. Masood, M. Yusuf, Q. Fariduddin, and A. Ahmad. 2009. Growth of indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Braz. J. Plant Physiol. 21:187-195. https://doi.org/10.1590/S1677-04202009000300003
  9. Hwang, S.W., J.Y. Lee, S.C. Hong, Y.H. Park, S.G. Yun, and M.H. Park. 2003. High temperature stress of summer Chinese cabbage in alpine region. Korean J. Soil Sci. Fert. 36:417-422.
  10. Kakizaki, T., T. Kato, N. Fukino, M. Ishida, K. Hatakeyama, and S. Matsumoto. 2011. Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed. Sci. 61:151-159. https://doi.org/10.1270/jsbbs.61.151
  11. Karacic, A. and M. Weih. 2006. Variation in growth and resource utilisation among eight poplar clones grown under different irrigation and fertilisation regimes in Sweden. Biomass Bioenerg. 30:115-124. https://doi.org/10.1016/j.biombioe.2005.11.007
  12. Kawasaki, Y., S. Matsuo, K. Suzuki, Y. Kanayama, and K. Kanahama. 2013. Root-zone cooling at high air temperatures enhances physiological activities and internal structures of roots in young tomato plants. J. Jpn. Soc. Hortic. Sci. 82:322-327. https://doi.org/10.2503/jjshs1.82.322
  13. Khalil, S.K., R. St Hilaire, A. Khan, A. Rehman, and J.C. Mexal. 2011. Growth and physiology of yarrow species Achillea millefolium cv. Cerise Queen and Achillea filipendulina cv. Parker Gold at optimum and limited moisture. Aust. J. Crop Sci. 5:1698-1706.
  14. Lee, J.G., J.W. Lee, S.H. Park, Y.A. Jang, S.S. Oh, T.C. Seo, H.K. Yoon, and Y.C. Um. 2011. Effect of low night-time temperature during seedling stage on growth of spring Chinese cabbage. J. Bio-Environ. Control 20:326-332.
  15. Lee, S.G., J.H. Moon, Y.A. Jang, W.M. Lee, I.H. Cho, S.Y. Kim, and K.D. Ko. 2009. Photosynthetic charateristics and cellular tissue of Chinese cabbage are affected by temperature and $CO_2$ concentration. J. Bio-Environ. Control 18:148-152.
  16. Lee, S.G., T.C. Seo, Y.A. Jang, J.G. Lee, C.W. Nam, C.S. Choi, K.H. Yeo, and Y.C. Um. 2012. Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. J. Bio-Environ. Control 21:271-275.
  17. Li, D., H. Liu, Y. Qiao, Y. Wang, B. Dong, Z. Cai, C. Shi, Y. Liu, X. Li, and M. Liu. 2013. Physiological regulation of soybean (Glycine max L. Merr.) growth in response to drought under elevated $CO_2$. J. Food Agric. Environ. 11:649-654.
  18. Li, J., X. Zhao, Y. Nishimura, and Y. Fukumoto. 2010. Correlation between bolting and physiological properties in Chinese cabbage (Brassica rapa L. pekinensis Group). J. Jpn. Soc. Hortic. Sci. 79:294-300. https://doi.org/10.2503/jjshs1.79.294
  19. Maggio, A., S. De Pascale, C. Ruggiero, and G. Barbieri. 2005. Physiological response of field-grown cabbage to salinity and drought stress. Eur. J. Agron. 23:57-67. https://doi.org/10.1016/j.eja.2004.09.004
  20. Nkansah, G. O. and T. Ito. 1994. Comparative studies on growth and development of heat-tolerant and non heat-torelant tomato plants grown at different root-zone temperatures. J. Jpn Soc. Hortic. Sci. 62:775-780. https://doi.org/10.2503/jjshs.62.775
  21. Oh, S., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh. 2014. Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Korean J. Hortic. Sci. Technol. 32:318-329. https://doi.org/10.7235/hort.2014.13174
  22. Opena, R.T., C.G. Kuo, and J.Y. Yoon. 1988. Breeding and seed production of Chinese cabbage in the tropics and subtropics. Technical Bul. No. 17. Asian Vegetable Research and Development Center (AVRDC), Shanhua, Taiwan.
  23. Rebolledo-Martinez, A., del Angel-Perez, A.L., Becerril-Roman, A.E., and Rebolledo-Martinez, L., 2005. Growth analysis for three pineapple cultivars grown on plastic mulch and bare soil. Interciencia 30:758-763.
  24. Sammis, T.W., B.A. Kratky, and I.P. Wu. 1988. Effects of limited irrigation on lettuce and Chinese cabbage yields. Irrig. Sci. 9:187-198. https://doi.org/10.1007/BF00275431
  25. Seong, K.C., J.R. Cho, J.H. Moon, K.Y. Kim, and H.D. Suh. 2003. Effect of triazole chemicals on bolting retardation of Chinese cabbage in spring cultivaion. J. Korean Soc. Hortic. Sci. 44:434-437.
  26. Song, L., W.S. Chow, L. Sun, C. Li, and C. Peng. 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming. J. Exp. Bot. 61:4087-4096. https://doi.org/10.1093/jxb/erq220
  27. Stasik, O. and H.G. Jones. 2007. Response of photosynthetic apparatus to moderate high temperature in contrasting wheat cultivars at different oxygen concentrations. J. Exp. Bot. 58:2133-2143. https://doi.org/10.1093/jxb/erm067
  28. Weih, M. and N.E. Nordh. 2002. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23:397-413. https://doi.org/10.1016/S0961-9534(02)00067-3
  29. Xu, Z.Z. and G.S. Zhou. 2005. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil 269:131-139. https://doi.org/10.1007/s11104-004-0397-y
  30. Xu, Z.Z. and G.S. Zhou. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of perennial grass Leymus chinensis. Planta 224:1080-1090. https://doi.org/10.1007/s00425-006-0281-5
  31. Yang, K.A., C.J. Lim, J.K. Hong, C.Y. Park, Y.H. Cheong, W.S. Chung, K.O. Lee, S.Y. Lee, M.J. Cho, and C.O. Lim. 2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171:175-182. https://doi.org/10.1016/j.plantsci.2006.03.013
  32. Zellnig, G., B. Zechmann and A. Perktold. 2004. Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma 233:221-227.

Cited by

  1. Impacts of climate change on the growth, morphological and physiological responses, and yield of Kimchi cabbage leaves vol.57, pp.5, 2016, https://doi.org/10.1007/s13580-016-1163-9
  2. Optimizing growth conditions for glucosinolate production in Chinese cabbage vol.59, pp.5, 2018, https://doi.org/10.1007/s13580-018-0084-1
  3. Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051186
  4. 재배시기, 정식일에 따른 배추의 생육 모델 개발 및 생산량 예측 평가 vol.26, pp.4, 2015, https://doi.org/10.12791/ksbec.2017.26.4.235
  5. 생육도일(GDDs)에 따른 '춘광' 봄배추의 적정 재배 작기 예측 vol.20, pp.2, 2015, https://doi.org/10.5532/kjafm.2018.20.2.175
  6. Antioxidant capacities and polyphenols in autumn-growing cultivar of Chinese cabbage (Brassica rapa L. ssp. pekinensis cv. Bulam Plus) vol.245, pp.9, 2019, https://doi.org/10.1007/s00217-019-03294-0
  7. 봄배추 생육이상 평가를 위한 드론 열적외 영상 기반 작물 수분 스트레스 지수(CWSI) 분포도 작성 vol.36, pp.5, 2015, https://doi.org/10.7780/kjrs.2020.36.5.1.2
  8. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage vol.8, pp.1, 2015, https://doi.org/10.1038/s41438-021-00484-4