참고문헌
- Annual Book of ASTM Standards (2004), International and Materials, American Society for Testing & Materials.
- Beden, S.M., Abdullah, S. and Ariffin, A.K. (2009), "Review of fatigue crack propagation models for metallic components", Eur. J. Sci. Res., 28(3), 364-397.
- C33 (2004), Standard Specification for Concrete Aggregates, ASTM International West Conshohocken, PA, USA.
- Dong, L., Xu, B., Dong, S., Chen, Q. and Wang, D. (2008), "Monitoring fatigue crack propagation of ferromagnetic materials with spontaneous abnormal magnetic signals", Int. J. Fatigue, 30, 1599-1605. https://doi.org/10.1016/j.ijfatigue.2007.11.009
- Dong, L., Xu, B., Dong, S., Song, L., Chen, Q. and Wang, D. (2009), "Stress dependence of the spontaneous stray field signals of ferromagnetic steel", NDT&E Int., 42, 323-327. https://doi.org/10.1016/j.ndteint.2008.12.005
- Dong, L., Xu, B., Dong, S. and Chen, Q. (2010a), "Characterisation of stress concentration of ferromagnetic materials by metal magnetic memory testing", Non-destruct. Test. Eval., 25(2), 145-151. https://doi.org/10.1080/10589750902795366
-
Dong, S., Wang, D., Xu, B. and Shi, C. (2010b), "Characterizing stress concentration by metal magnetic memory signal of
$H_p$ (x)", Int. J. Appl. Electromagnet. Mech., 33(3-4), 1219-1223. https://doi.org/10.3233/JAE-2010-1241 - Dong, L.-H., Xu, B.-S., Wang, H.-P. and Xue, N. (2012), "A physical model for self-emitting magnetic signals during fatigue crack propagation", Appl. Mech. Mater., 190-191, 415-418. https://doi.org/10.4028/www.scientific.net/AMM.190-191.415
- Dubov, A.A (1997), "A study of metal properties using the method of magnetic memory", Metal Sci. Heat Treat., 39(9), 401-408. https://doi.org/10.1007/BF02469065
- Dubov, A.A., DubovAl, A. and Kolokolnikov, S.M. (2006), "Method of Metal Magnetic Memory (MMM) and inspection instrument", International Institute of Welding.
- Dowling, N.E. (1993), Mechanical Behaviour of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Prentice-Hall International Editions.
- Huang, H., Jiang, S., Yang, C. and Liu, Z. (2014), "Stress concentration impact on the magnetic memory signal of ferromagnetic structural steel", Non-destruct. Test. Eval., 29(4), 377-390. https://doi.org/10.1080/10589759.2014.949710
- Li, L., Huang, S., Wang, X., Shi, K. and Wu, S. (2003), "Magnetic field abnormality caused by welding residual stress", J. Magnet. Magnet. Mater., 261(3), 385-391. https://doi.org/10.1016/S0304-8853(02)01488-9
- Milne, I., Ritchie, R.O. and Karihaloo, B.L. (2003), Storage Tank Failures, Comprehensive Structural Integrity Book.
- Roskosz, M. and Bieniek, M. (2012), "Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements", NDT&E Int., 45(1), 55-62. https://doi.org/10.1016/j.ndteint.2011.09.007
- Wang, Z.D., Yao, K., Deng, B. and Ding, K.Q. (2010a), "Quantitative study of metal magnetic memory signal versus local stress concentration", NDT&E Int., 43(6), 513-518. https://doi.org/10.1016/j.ndteint.2010.05.007
- Wang, Z.D., Yao, K., Deng, B. and Ding, K.Q. (2010b), "Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals", NDT&E Int., 43(4), 354-359. https://doi.org/10.1016/j.ndteint.2009.12.006
- Wang, Z.D., Gu, Y. and Wang, Y.S. (2012), "A review of three magnetic NDT technologies", J. Magnet. Magnet. Mater., 324(4), 382-388. https://doi.org/10.1016/j.jmmm.2011.08.048
- Wu, D., Xu, M. and Li, J. (2010), "Study on physical mechanism of metal magnetic memory technique", Appl. Mech. Mater., 34-35, 841-844. https://doi.org/10.4028/www.scientific.net/AMM.34-35.841
- Xing, H., Xu, M., Wang, R. and Zhang, J. (2006), "MMM Fatigue damage evaluation and life prediction modelling for ferromagnetic materials", Key Eng. Mater., 324-325, 619-622. https://doi.org/10.4028/www.scientific.net/KEM.324-325.619
- Xing, H., Wang, R., Xu, M. and Zhang, J. (2007), "Correlation between crack growth rate and magnetic memory signal of X45 steel", Key Eng. Mater., 353-358, 2293-2296. https://doi.org/10.4028/www.scientific.net/KEM.353-358.2293
- Xu, M.X., Xu, M.Q., Li, J.W. and Xing, H.Y. (2012), "Using modified J-A model in MMM detection at elastic stress stage", Non-destruct. Test. Eval., 27(2), 121-138. https://doi.org/10.1080/10589759.2011.622758
- Yang, L.J., Liu, B., Chen, L.J. and Gao, S.W. (2013), "The quantitative interpretation by measurement using the magnetic memory method (MMM)-based on density functional theory", NDT&E Int., 55, 15-20. https://doi.org/10.1016/j.ndteint.2013.01.002
- Yu, F. and Zhang, J. (2010), "Stress concentration positions determination of ferromagnetic material based on the magnetic test method", Key Eng. Mater., 417-418, 865-868.
- Zhang, Y.L., Gou, R.B., Li, J.M., Shen, G.T. and Zeng, Y.J. (2012), "Characteristics of metal magnetic memory signals of different steels in high cycle fatigue tests", Fatigue Fract. Eng. Mater. Struct., 35(7), 595-605. https://doi.org/10.1111/j.1460-2695.2012.01651.x
피인용 문헌
- Modified magnetomechancial model in the constant and low intensity magnetic field based on J–A theory vol.26, pp.7, 2017, https://doi.org/10.1088/1674-1056/26/7/077502
- Magnetic memory signals of ferromagnetic weldment induced by dynamic bending load vol.32, pp.2, 2017, https://doi.org/10.1080/10589759.2016.1159307
- Numerical Analysis of Magnetic Flux Leakage of Transverse Defects of Sucker Rod vol.46, pp.5, 2018, https://doi.org/10.1520/JTE20160543
- Analysis of MFL Model for Sucker Rod Defects and Its MFL Signal Processing vol.47, pp.5, 2019, https://doi.org/10.1520/JTE20170687
- Simulation of Real Defect Geometry and Its Detection Using Passive Magnetic Inspection (PMI) Method vol.8, pp.7, 2018, https://doi.org/10.3390/app8071147
- Detection of high stress concentration zone using magnetic flux leakage method vol.11, pp.4, 2020, https://doi.org/10.1108/ijsi-12-2019-0139
- Ductile crack initiation evaluation in stiffened steel bridge piers under cyclic loading vol.36, pp.4, 2015, https://doi.org/10.12989/scs.2020.36.4.463
- Magnetic force induced vibration evaluation (M5) method for frequency analysis of rebar-debonding in reinforced concrete vol.182, pp.None, 2015, https://doi.org/10.1016/j.measurement.2021.109655