DOI QR코드

DOI QR Code

유한요소해석법을 이용한 2 inch 사파이어 vertical Bridgman 결정성장 공정 열응력 해석

Analysis of thermal stress through finite element analysis during vertical Bridgman crystal growth of 2 inch sapphire

  • 김재학 (부산대학교 공과대학 재료공학부) ;
  • 이욱진 (한국생산기술연구원 동남지역본부) ;
  • 박용호 (부산대학교 공과대학 재료공학부) ;
  • 이영철 (한국생산기술연구원 동남지역본부)
  • Kim, Jae Hak (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Wook Jin (Dongnam Regional Division, Korea Institute of Industrial Technology) ;
  • Park, Yong Ho (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Young Cheol (Dongnam Regional Division, Korea Institute of Industrial Technology)
  • 투고 : 2015.11.18
  • 심사 : 2015.12.04
  • 발행 : 2015.12.31

초록

사파이어 단결정은 GaN계 화합물 증착이 용이하여 고휘도 LED(Light Emitting Diode), 고출력 레이저 산업 등에서 크게 각광받고 있다. 다양한 사파이어 단결정 제조공법 중 vertical Bridgman 공법은 고품질의 사파이어를 c-축 방향으로 성장시킬 수 있는 공법이며 상업적으로 적용이 검토되고 있다. 본 연구에서는 2인치 사파이어 성장 vertical Bridgman 공정에서 성장시 온도구배에 의해 발생하는 열응력을 유한요소 모델을 통해 분석하였다. 이를 통해 성장시 수직, 수평방향으로의 온도구배가 사파이어 결정의 열응력과 결함발생에 미치는 영향을 검토하였다.

Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. Among the many crystal growth methods, vertical Bridgman process is an excellent commercial method for growing high quality sapphire crystals with c-axis. In this study, the thermally induced stress in Sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model. A vertical Bridgman process of 2-inch Sapphire was considered for the model. The effects of vertical and transverse temperature gradients on the thermal stress during the process were discussed based on the finite element analysis results.

키워드

참고문헌

  1. A. Wang, G. Pickrell and R. May, "Single-crystal sapphire optical fiber sensor instrumentation", Virginia Polytechnic Inst. (US) Tech. Rep. 3 (2002) 21.
  2. J.K. Kang and Y.J. Kim, "Fabrication and characterization of tilted R-plane sapphire wafer for nonpolara-plane GaN", J. Korean Cryst. Growth and Cryst. Technol. 21 (2011) 187. https://doi.org/10.6111/JKCGCT.2011.21.5.187
  3. S.J. Lim, H.Y. Shin, J.H. Kim and J.I. Im, "Finite element analysis for Czochralski growth process of sapphire single crystal", J. Korean Cryst. Growth and Cryst. Technol. 21 (2011) 193. https://doi.org/10.6111/JKCGCT.2011.21.5.193
  4. S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov and V.V. Kalaev, "Numerical analysis of sapphire crystal growth by the Kyropoulos technique", Opt. Mater. 30 (2007) 62. https://doi.org/10.1016/j.optmat.2006.11.012
  5. W.J. Lee, Y.C. Lee, H.H. Jo and Y.H. Park, "Effect of crucible geometry on melt convection and interface shape during Kyropoulos growth of sapphire single crystal", J. Cryst. Growth 324 (2011) 248. https://doi.org/10.1016/j.jcrysgro.2011.03.032
  6. C.P. Khattak and F. Schmid, "Growth of the world's largest sapphire crystals", J. Cryst. Growth 225 (2001) 572. https://doi.org/10.1016/S0022-0248(01)00955-1
  7. C. Miyagawa, T. Kobayashi, T. Taishi and K. Hoshikawa, "Demonstration of crack-free c-axis sapphire crystal growth using the vertical Bridgman method", J. Cryst. Growth 372 (2013) 95. https://doi.org/10.1016/j.jcrysgro.2013.03.006
  8. K. Hoshikawa, J. Osada, Y. Saitou, E. Ohba, C. Miyagawa, T. Kobayashi, J. Yanagisawa, M. Shinozuka and K. Kanno, "Vertical Bridgman growth of sapphire - Seed crystal shapes and seeding characteristics", J. Cryst. Growth 395 (2014) 80. https://doi.org/10.1016/j.jcrysgro.2014.03.007
  9. K. Hoshikawa, T. Taishi, E. Ohba, C. Miyagawa, T. Kobayashi, J. Yanagisawa and M. Shinozuka, "Vertical Bridgman growth of sapphire crystals, with thin-neck formation process", J. Cryst. Growth 401 (2014) 146. https://doi.org/10.1016/j.jcrysgro.2013.12.051
  10. C. Miyagawa, T. Kobayashi, T. Taishi and K. Hoshikawa, "Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation", J. Cryst. Growth 402 (2014) 83. https://doi.org/10.1016/j.jcrysgro.2014.04.030
  11. F.J. Bruni, C.M. Liu and J.S. Sundberg, "Will Czochralski growth of sapphire once again prevail?", ACTA Phys. Pol. A 124 (2013) 213. https://doi.org/10.12693/APhysPolA.124.213
  12. H. Li, G. Zhao, X. Zeng, Z. Qian, J. Guo, S. Zhou and J. Xu, "Low-angle boundary in high-temperature scintillating crystal Ce : YAP", J. Inorg. Mater. 19 (2004) 1186.
  13. H.Y. Shin, S.M. Hond, J.W. Woon, D.Y. Jeong and J.I. Im, "Numerical analysis of CZ growth process for sapphire crystal of 300 mm length: Part II. Predictions of crystal growth length without sub-grain defects", J. Korean Cryst. Growth and Cryst. Technol. 23 (2013) 272. https://doi.org/10.6111/JKCGCT.2013.23.6.272
  14. S.E. Demina and V.V. Kalaev, "3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth", J. Cryst. Growth 320 (2011) 23. https://doi.org/10.1016/j.jcrysgro.2011.01.101
  15. S.V. Sinogeikin, D.L. Lakshtanov, J.D. Nicholas, J.M. Jackson and J.D. Bass, "High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating", J. Eur. Ceram. Soc. 25 (2005) 1313. https://doi.org/10.1016/j.jeurceramsoc.2005.01.001
  16. T. Vodenitcharov, L.C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho and M. Sato, "The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks", J. Mater. Process. Technol. 194 (2007) 52. https://doi.org/10.1016/j.jmatprotec.2007.03.125
  17. Z.L. Jin, H.S. Fang, N. Yang, Z. Zhang, S. Wang and J.F. Xu, "Influence of temperature-dependent thermophysical properties of sapphire on the modeling of Kyropoulos cooling process", J. Cryst. Growth 405 (2014) 52. https://doi.org/10.1016/j.jcrysgro.2014.07.049
  18. K. Peter, D. Lagerlof and A.H. Heuer, "Slip and twinning in sapphire (${\alpha}-Al_2O_3$)", J. Am. Ceram. Soc. 77 (1994) 385. https://doi.org/10.1111/j.1151-2916.1994.tb07006.x