DOI QR코드

DOI QR Code

Lignin signatures of vegetation and soils in tropical environments

  • Belanger, E. (GEOTOP-UQAM, Institut des Sciences de I'Environnement) ;
  • Lucotte, M. (GEOTOP-UQAM, Institut des Sciences de I'Environnement) ;
  • Gregoire, B. (GEOTOP-UQAM, Institut des Sciences de I'Environnement) ;
  • Moingt, M. (GEOTOP-UQAM, Institut des Sciences de I'Environnement) ;
  • Paquet, S. (GEOTOP-UQAM, Institut des Sciences de I'Environnement) ;
  • Davidson, R. (GEOTOP-UQAM, Institut des Sciences de I'Environnement) ;
  • Mertens, F. (Centro de Desenvolvimento Sustentavel, University of Brasilia) ;
  • Passos, C.J.S. (Faculdade UnB Planaltina - University of Brasilia) ;
  • Romana, C. (Paris Descartes University-PRES Paris Sorbonne Cite)
  • Received : 2015.06.02
  • Accepted : 2015.12.09
  • Published : 2015.12.25

Abstract

The few lignin biomarker studies conducted in tropical environments are hampered by having to use references signatures established for plants and soils characteristic of the temperate zone. This study presents a lignin biomarker analysis (vanillyls (V), p-hydroxyls (P), syringyls (S), cinnamyls (C)) of the dominant plant species and soil horizons as well as an analysis of the interrelated terrigenous organic matter (TOM) dynamics between vegetation and soil of the $Tapaj{\acute{o}}s$ river region, an active colonization front in the Brazilian Amazon. We collected and analyzed samples from 17 fresh dominant plant species and 48 soil cores at three depths (0-5 cm, 20-25 cm, 50-55 cm) from primary rainforest, fallow forest, subsistence agriculture fields and pastures. Lignin signatures in tropical plants clearly distinguish from temperate ones with high ratios of Acid/aldehyde of vanillyls ((Ad/Al)v) and P/V+S. Contrary to temperate environments, similarly high ratios in tropical soils are not related to TOM degradation along with pedogenesis but to direct influence of plants growing on them. Lignin signatures of both plants and soils of primary rainforest and fallow forest clearly distinguish from those of non-forested areas, i.e., agriculture fields and pastures. Attalea speciosa Palm trees, an invasive species in all perturbed landscapes of the Amazon, exhibit lignin signatures clearly distinct from other dominant plant species. The study of lignin signatures in tropical areas thus represents a powerful tool to evaluate the impact of primary rainforest clearing on TOM dynamics in tropical areas.

Keywords

References

  1. Abad-Franch, F., Palomeque, F.S., Aguilar, H.M. and Miles, M.A. (2005), "Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): Risk factors for palm tree infestation in western Ecuador", Trop. Med. Int. Health, 10(12), 1258-1266. https://doi.org/10.1111/j.1365-3156.2005.01511.x
  2. Anderson, A.B., May, P.H. and Balick, M.J. (1991), The Subsidy from Nature: Palm Forests, Peasantry and Development on an Amazon Frontier, Columbia University Press, New-York, NY, USA.
  3. Baillie, I.C. (2001), "Soil Survey Staff 1999, Soil Taxonomy", Soil Use Manage., 17(1), 57-60.
  4. Benner, R., Weliky, K. and Hedges, J.I. (1990), "Early diagenesis of mangrove leaves in a tropical estuary: Molecular-level analyses of neutral sugars and lignin-derived phenols", Geochimica et Cosmochimica Acta, 54(7), 1991-2001. https://doi.org/10.1016/0016-7037(90)90267-O
  5. Bernardes, M.C., Martinelli, L.A., Krusche, A.V., Gudeman, J., Moreira, M., Victoria, R.L., Ometto, J.P.H.B., Ballester, M.V.R., Aufdenkampe, A.K., Richey, J.E. and Hedges, J.I. (2004), "Riverine organic matter composition as a function of land use changes, southwest Amazon", Ecol. Appl., 14(sp4), 263-279. https://doi.org/10.1890/01-6028
  6. Caron, S., Lucotte, M. and Teisserenc, R. (2008), "Mercury transfer from watersheds to aquatic environments following the erosion of agrarian soils: A molecular biomarker approach", Can. J. Soil Sci., 88(5), 801-811. https://doi.org/10.4141/CJSS07112
  7. De Leeuw, J.W. and Largeau, C. (1993), "A Review of Macromolecular Organic Compounds that Comprise Living Organisms and their Role in Kerogen, Coal, and Petroleum Formation", In: Organic Geochemistry, (M. Engel, S. Macko Editors), Springer US, pp. 23-72.
  8. Dittmar, T. and Lara, R.J. (2001), "Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazonia, Brazil)", Geochimica et Cosmochimica Acta, 65(9), 1417-1428. https://doi.org/10.1016/S0016-7037(00)00619-0
  9. Embrapa (2007), Uso Da Terra E Vegetacao, D.N.Z.E.-E.D.A.D.I.D.R.B.-C.-S.G.T.E.a.O.
  10. Farella, N., Lucotte, M., Louchouarn, P. and Roulet, M. (2001), "Deforestation modifying terrestrial organic transport in the Rio Tapajos, Brazilian Amazon", Organic Geochem., 32(12), 1443-1458. https://doi.org/10.1016/S0146-6380(01)00103-6
  11. Goncalves, D. (2010), Phytosociological structure of forest succession ecosystems with prevalence of F Attalea maripa (Aubl.) Mart. and Astrocaryum aculeatum G. Mey in riverine communities of Tapajos River. Ciencias Florestais. Master. Universidad federal rural da amazonia, Belem, Brazil.
  12. Goni, M.A. and Hedges, J.I. (1995), "Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation", Geochimica et Cosmochimica Acta, 59(14), 2965-2981. https://doi.org/10.1016/0016-7037(95)00188-3
  13. Goni, M.A. and Montgomery, S. (2000), "Alkaline CuO oxidation with a microwave digestion system: Lignin analyses of geochemical samples", Anal. Chem., 72(14), 3116-3121. https://doi.org/10.1021/ac991316w
  14. Grupo De Trabalho Interministerial (2006), Plano De Desenvolvimento Sustentavel Para a Area De Influencia Da Br-163. Brasilia, B.C.D.C.C.D.P.D.R., 44, Brasilia, Brazil.
  15. Guggenberger, G., Christensen, B.T. and Zech, W. (1994), "Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature", Eur. J. Soil Sci., 45(4), 449-458. https://doi.org/10.1111/j.1365-2389.1994.tb00530.x
  16. Hedges, J.I. and Ertel, J.R. (1982), "Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products", Anal. Chem., 54(2), 174-178. https://doi.org/10.1021/ac00239a007
  17. Hedges, J.I. and Mann, D.C. (1979), "The characterization of plant tissues by their lignin oxidation products", Geochimica et Cosmochimica Acta, 43(11), 1803-1807. https://doi.org/10.1016/0016-7037(79)90028-0
  18. Hedges, J., Clark, W., Quay, P., Richey, J., Devol, A. and Santos, U. (1986), "Compositions and fluxes of particulate organic material in the Amazon River", Limnol. Oceanogr., 31(4), 717-738. https://doi.org/10.4319/lo.1986.31.4.0717
  19. Hedges, J.I., Blanchette, R.A., Weliky, K. and Devol, A.H. (1988), "Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study", Geochimica et Cosmochimica Acta, 52(11), 2717-2726. https://doi.org/10.1016/0016-7037(88)90040-3
  20. Hernes, P.J., Robinson, A.C. and Aufdenkampe, A.K. (2007), "Fractionation of lignin during leaching and sorption and implications for organic matter "freshness"", Geophys. Res. Lett., 34(17), L17401. https://doi.org/10.1029/2007GL031017
  21. Houel, S., Louchouarn, P., Lucotte, M., Canuel, R. and Ghaleb, B. (2006), "Translocation of soil organic matter following reservoir impoundment in boreal systems: Implications for in situ productivity", Limnol. Oceanogr., 51(3), 1497-1513. https://doi.org/10.4319/lo.2006.51.3.1497
  22. Jordan, C.F. (1985), "Soils of the Amazon rainforest", In: Key Environments: Amazonia, (G.T. Prance Editor), Pergamon Press, Oxford, UK, pp. 83-94.
  23. Louchouarn, P., Lucotte, M. and Farella, N. (1999), "Historical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment", Organ. Geochem., 30(7), 675-699. https://doi.org/10.1016/S0146-6380(99)00019-4
  24. Moingt, M., Lucotte, M., Paquet, S. and Ghaleb, B. (2014), "Deciphering the impact of land-uses on terrestrial organic matter and mercury inputs to large boreal lakes of central Quebec using lignin biomarkers", Appl. Geochem., 41, 34-48. https://doi.org/10.1016/j.apgeochem.2013.11.008
  25. Onstad, G.D., Canfield, D.E., Quay, P.D. and Hedges, J.I. (2000), "Sources of particulate organic matter in rivers from the continental usa: lignin phenol and stable carbon isotope compositions", Geochimica et Cosmochimica Acta, 64(20), 3539-3546. https://doi.org/10.1016/S0016-7037(00)00451-8
  26. Opsahl, S. and Benner, R. (1995), "Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications", Geochimica et Cosmochimica Acta, 59(23), 4889-4904. https://doi.org/10.1016/0016-7037(95)00348-7
  27. Otto, A. and Simpson, M. (2006), "Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil", Biogeochemistry, 80(2), 121-142. https://doi.org/10.1007/s10533-006-9014-x
  28. Petit, S., Lucotte, M. and Teisserenc, R. (2011), "Mercury sources and bioavailability in lakes located in the mining district of Chibougamau, eastern Canada", Appl. Geochem., 26(2), 230-241. https://doi.org/10.1016/j.apgeochem.2010.11.023
  29. Prahl, F.G., Ertel, J.R., Goni, M.A., Sparrow, M.A. and Eversmeyer, B. (1994), "Terrestrial organic carbon contributions to sediments on the Washington margin", Geochimica et Cosmochimica Acta, 58(14), 3035-3048. https://doi.org/10.1016/0016-7037(94)90177-5
  30. Rezende, C.E., Pfeiffer, W.C., Martinelli, L.A., Tsamakis, E., Hedges, J.I. and Keil, R.G. (2010), "Lignin phenols used to infer organic matter sources to Sepetiba Bay-RJ, Brasil", Estuar.Coast. Shelf Sci., 87(3), 479-486. https://doi.org/10.1016/j.ecss.2010.02.008
  31. Richards, P.W. (1996), The Tropical Rain Forest: An Ecological Study, Cambridge University Press.
  32. Romana, C.A., Pizarro, J.C.N., Rodas, E. and Guilbert, E. (1999), "Palm trees as ecological indicators of risk areas for Chagas disease", T. Roy. Soc. Trop. Med. H., 93(6), 594-595. https://doi.org/10.1016/S0035-9203(99)90059-7
  33. Roulet, M., Lucotte, M., Saint-Aubin, A., Tran, S., Rheault, I., Farella, N., De Jesus Da Silva, E., Dezencourt, J., Sousa Passos, C.J., Santos Soares, G., Guimaraes, J.R.D., Mergler, D. and Amorim, M. (1998), "The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chao formation of the lower Tapajos River Valley, Para state, Brazil", Sci. Total Environ., 223(1), 1-24. https://doi.org/10.1016/S0048-9697(98)00265-4
  34. Salati, E. (1986), The Climatology and Hydrology of Amazonia, Pergamon Press, Oxford, UK.
  35. Teisserenc, R., Lucotte, M., Houel, S. and Carreau, J. (2010), "Integrated transfers of terrigenous organic matter to lakes at their watershed level: A combined biomarker and GIS analysis", Geochimica et Cosmochimica Acta, 74(22), 6375-6386. https://doi.org/10.1016/j.gca.2010.08.029
  36. Tesi, T., Langone, L., Goni, M.A., Turchetto, M., Miserocchi, S. and Boldrin, A. (2008), "Source and composition of organic matter in the Bari canyon (Italy): Dense water cascading versus particulate export from the upper ocean", Deep Sea Research Part I: Oceanographic Research Papers, 55(7), 813-831. https://doi.org/10.1016/j.dsr.2008.03.007
  37. Thevenot, M., Dignac, M.-F. and Rumpel, C. (2010), "Fate of lignins in soils: A review", Soil Biol. Biochem., 42(8), 1200-1211. https://doi.org/10.1016/j.soilbio.2010.03.017
  38. Ugolini, F.C., Reanier, R.E., Rau, G.H. and Hedges, J.I. (1981), "Pedological, isotopic and geochemical investigations of the soils at the boreal forest and alpine tundra transition in northern Alaska", Soil Science, 131(6), 359-374. https://doi.org/10.1097/00010694-198106000-00005
  39. Zocatelli, R., Cecanho, F., Amorim, M., Bernardes, M., Moreira-Turcq, P., Turcq, B., Sifeddine, A. and Cordeiro, R.C. (2011), "Uso dos fenois da lignina no estudo da materia organica na varzea do Lago Grande Curuai, Para e no Lago do Caco, Maranhao, Brasil", Acta Amazonica, 41,195-204. https://doi.org/10.1590/S0044-59672011000200003

Cited by

  1. Altered nature of terrestrial organic matter transferred to aquatic systems following deforestation in the Amazon vol.87, 2017, https://doi.org/10.1016/j.apgeochem.2017.10.016
  2. Chemotaxonomic patterns of vegetation and soils along altitudinal transects of the Bale Mountains, Ethiopia, and implications for paleovegetation reconstructions - Part II: lignin-derived phenols and vol.68, pp.2, 2019, https://doi.org/10.5194/egqsj-68-189-2019