DOI QR코드

DOI QR Code

Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle

  • Baik, Myunggi (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Nguyen, Trang Hoa (Department of Molecular Biotechnology, Chonnam National University) ;
  • Jeong, Jin Young (National Institute of Animal Science, RDA) ;
  • Piao, Min Yu (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kang, Hyeok Joong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.07.31
  • Accepted : 2014.08.31
  • Published : 2015.01.01

Abstract

Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.

Keywords

References

  1. Anderson, N. and J. Borlak. 2008. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol. Rev. 60:311-357. https://doi.org/10.1124/pr.108.00001
  2. Bonen, A., A. Chabowski, J. J. Luiken, and J. F. Glatz. 2007. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: Molecular, biochemical, and physiological evidence. Physiology (Bethesda, Md.) 22:15-29.
  3. Bong, J. J., J. Y. Jeong, P. Rajasekar, Y. M. Cho, E. G. Kwon, H. C. Kim, B. H. Paek, and M. Baik. 2012. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers. Meat Sci. 91:284-293. https://doi.org/10.1016/j.meatsci.2012.02.004
  4. Chen, X., X. Wang, Z. Li, L. Kong, G. Liu, J. Fu, and A. Wang. 2012. Molecular cloning, tissue expression and protein structure prediction of the porcine 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR) gene. Gene 495:170-177. https://doi.org/10.1016/j.gene.2011.12.051
  5. Edwards, P. A., M. A. Kennedy, and P. A. Mak. 2002. LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul. Pharmacol. 38:249-256. https://doi.org/10.1016/S1537-1891(02)00175-1
  6. Emery, R. S., J. S. Liesman, and T. H. Herdt. 1992. Metabolism of long-chain fatty-acids by ruminant liver. J. Nutr. 122:832-837.
  7. Folch, J., M. Lees, and G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509.
  8. Goldberg, I. J. and M. Merkel. 2001. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front. Biosci. 6:D388-D405. https://doi.org/10.2741/Goldberg
  9. Graulet, B., D. Gruffat, D. Durand, and D. Bauchart. 1998. Fatty acid metabolism and very low density lipoprotein secretion in liver slices from rats and preruminant calves. J. Biochem. 124:1212-1219. https://doi.org/10.1093/oxfordjournals.jbchem.a022240
  10. Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76:3882-3896. https://doi.org/10.3168/jds.S0022-0302(93)77729-2
  11. Hausman, G. J., M. V. Dodson, K. Ajuwon, M. Azain, K. M. Barnes, L. L. Guan, Z. Jiang, S. P. Poulos, R. D. Sainz, S. Smith, M. Spurlock, J. Novakofski, M. E. Fernyhough, and W. G. Bergen. 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87:1218-1246. https://doi.org/10.2527/jas.2008-1427
  12. Jeong, J., J. Bong, G. D. Kim, S. T. Joo, H. J. Lee, and M. Baik. 2013. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls. J. Anim. Sci. 91:4692-4704. https://doi.org/10.2527/jas.2012-6089
  13. KAPE. 2014. Korea Institute for Animal Products Quality Evaluation. http://www.ekape.or.kr/view/eng. 07-15-2014.
  14. Katoh, N. 2002. Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripartum diseases in dairy cows. J. Vet. Med. Sci. 64:293-307. https://doi.org/10.1292/jvms.64.293
  15. Lin, H. Y., I. C. Yu, R. S. Wang, Y. T. Chen, N. C. Liu, S. Altuwaijri, C. L. Hsu, W. L. Ma, J. Jokinen, J. D. Sparks, S. Yeh, and C. Chang. 2008. Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology 47:1924-1935. https://doi.org/10.1002/hep.22252
  16. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  17. Loor, J. J., H. M. Dann, N. A. Guretzky, R. E. Everts, R. Oliveira, C. A. Green, N. B. Litherland, S. L. Rodriguez-Zas, H. A. Lewin, and J. K. Drackley. 2006. Plane of nutrition prepartum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling. Physiol. Genomics 27:29-41. https://doi.org/10.1152/physiolgenomics.00036.2006
  18. Love-Gregory, L., R. Sherva, L. Sun, J. Wasson, T. Schappe, A. Doria, D. C. Rao, S. C. Hunt, S. Klein, R. J. Neuman, M. A. Permutt, and N. A. Abumrad. 2008. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17:1695-1704. https://doi.org/10.1093/hmg/ddn060
  19. Maltin, C., D. Balcerzak, R. Tilley, and M. Delday. 2003. Determinants of meat quality: tenderness. Proc. Nutr. Soc. 62:337-347. https://doi.org/10.1079/PNS2003248
  20. Park, G. B., S. S. Moon, Y. D. Ko, J. K. Ha, J. G. Lee, H. H. Chang, and S. T. Joo. 2002. Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. J. Anim. Sci. 80:129-136.
  21. Shimano, H., N. Yahagi, M. Amemiya-Kudo, A. H. Hasty, J. Osuga, Y. Tamura, F. Shionoiri, Y. Iizuka, K. Ohashi, K. Harada, T. Gotoda, S. Ishibashi, and N. Yamada. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274:35832-35839. https://doi.org/10.1074/jbc.274.50.35832
  22. Van Den Top, A. M., T. Wensing, M. J. Geelen, G. H. Wentink, A. T. Van't Klooster, and A. C. Beynen. 1995. Time trends of plasma lipids and enzymes synthesizing hepatic triacylglycerol during postpartum development of fatty liver in dairy cows. J. Dairy Sci. 78:2208-2220. https://doi.org/10.3168/jds.S0022-0302(95)76848-5

Cited by

  1. Pyrazinamide induced hepatic injury in rats through inhibiting the PPARα pathway vol.36, pp.12, 2016, https://doi.org/10.1002/jat.3319
  2. Tissue Expression and Variation of the DGAT2 Gene and Its Effect on Carcass and Meat Quality Traits in Yak vol.9, pp.2, 2019, https://doi.org/10.3390/ani9020061
  3. Downregulated angiopoietin-like protein 8 production at calving related to changes in lipid metabolism in dairy cows vol.96, pp.7, 2015, https://doi.org/10.1093/jas/sky162
  4. Genome-wide scan reveals genetic divergence and diverse adaptive selection in Chinese local cattle vol.20, pp.None, 2015, https://doi.org/10.1186/s12864-019-5822-y
  5. Transcriptome changes associated with fat deposition in the longissimus thoracis of Korean cattle following castration vol.104, pp.6, 2015, https://doi.org/10.1111/jpn.13393
  6. Evaluation of the subcapsular technique for primary closure castration in donkeys (Equus asinus) vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-93585-y