DOI QR코드

DOI QR Code

Molecular Characterization and Expression Analysis of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-1 Genes in Qinghai-Tibet Plateau Bos grunniens and Lowland Bos taurus

  • Chen, Ya-bing (College of Life Science and Technology, Southwest University for Nationalities) ;
  • Fu, Mei (College of Life Science and Technology, Southwest University for Nationalities) ;
  • Lan, Dao-liang (Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities) ;
  • Li, Jian (College of Life Science and Technology, Southwest University for Nationalities)
  • Received : 2014.05.22
  • Accepted : 2014.08.18
  • Published : 2015.01.01

Abstract

Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak). We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA) IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR) technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05). The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05) of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

Keywords

References

  1. Annunziata, M., R. Granata, and E. Ghigo. 2011. The IGF system. Acta Diabetol. 48:1-9. https://doi.org/10.1007/s00592-010-0227-z
  2. Cao, Y.-B., X.-Q. Chen, S. Wang, X.-C. Chen, Y.-X. Wang, J. Chang, and J.-Z. Du. 2009. Growth hormone and insulin-like growth factor of naked carp (Gymnocypris przewalskii) in lake Qinghai: Expression in different water environments. Gen. Comp. Endocrinol. 161:400-406. https://doi.org/10.1016/j.ygcen.2009.02.005
  3. Cao, Y.-B., X.-Q. Chen, S. Wang, Y.-X. Wang, and J.-Z. Du. 2008. Evolution and regulation of the downstream gene of hypoxiainducible factor-$1{\alpha}$ in naked carp (Gymnocypris przewalskii) from lake Qinghai, China. J. Mol. Evol. 67:570-580. https://doi.org/10.1007/s00239-008-9175-4
  4. Eliasz, S., S. Liang, Y. Chen, M. A. De Marco, O. Machek, S. Skucha, L. Miele, and M. Bocchetta. 2010. Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene 29:2488-2498. https://doi.org/10.1038/onc.2010.7
  5. Fukuda, R., K. Hirota, F. Fan, Y. Do Jung, L. M. Ellis, and G. L. Semenza. 2002. Insulin-like growth factor 1 induces hypoxiainducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem. 277:38205-38211. https://doi.org/10.1074/jbc.M203781200
  6. Hu, Q., T. Ma, K. Wang, T. Xu, J. Liu, and Q. Qiu. 2012. The Yak genome database: An integrative database for studying yak biology and high-altitude adaption. BMC Genomics 13:600. https://doi.org/10.1186/1471-2164-13-600
  7. Jones, J. I. and D. R. Clemmons. 1995. Insulin-like growth factors and their binding proteins: Biological actions. Endocr. Rev. 16:3-34.
  8. Kajimura, S., K. Aida, and C. Duan. 2005. Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc. Natl. Acad. Sci. USA. 102:1240-1245. https://doi.org/10.1073/pnas.0407443102
  9. Lee, P. D. K., L. C. Giudice, C. A. Conover, and D. R. Powell. 1997. Insulin-like growth factor binding protein-1: Recent findings and new directions. Exp. Biol. Med. 216:319-357. https://doi.org/10.3181/00379727-216-44182
  10. Mehrhof, F. B., F.-U. Muller, M. W. Bergmann, P. Li, Y. Wang, W. Schmitz, R. Dietz, and R. von Harsdorf. 2001. In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104:2088-2094. https://doi.org/10.1161/hc4201.097133
  11. Murphy, C. T. and P. J. Hu. 2013. Insulin/insulin-like growth factor signaling in C. elegans. WormBook: The Online Review of C. elegans biology: 1.
  12. Ohlsson, C., S. Mohan, K. Sjogren, A. S. Tivesten, J. Isgaard, O. Isaksson, J.-O. Jansson, and J. Svensson. 2009. The role of liver-derived insulin-like growth factor-I. Endocr. Rev. 30:494-535. https://doi.org/10.1210/er.2009-0010
  13. Rajpathak, S. N., M. J. Gunter, J. Wylie-Rosett, G. Y. F. Ho, R. C. Kaplan, R. Muzumdar, T. E. Rohan, and H. D. Strickler. 2009. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes/Metab. Res. Rev. 25:3-12. https://doi.org/10.1002/dmrr.919
  14. Schmittgen, T. D. and K. J. Livak. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3:1101-1108. https://doi.org/10.1038/nprot.2008.73
  15. Sugawara, J., S. I. Tazuke, L. F-Suen, D. R. Powell, F. Kaper, A. J. Giaccia, and L. C. Giudice. 2000. Regulation of insulin-like growth factor-binding protein 1 by hypoxia and 3', 5'-cyclic adenosine monophosphate is additive in HepG2 cells 1. J. Clin. Endocrinol. Metab. 85:3821-3827.
  16. Sun, C.-F., Y. Tao, X.-Y. Jiang, andS.-M. Zou. 2011. IGF binding protein 1 is correlated with hypoxia-induced growth reduce and developmental defects in grass carp (Ctenopharyngodon idellus) embryos. Gen. Comp. Endocrinol. 172:409-415. https://doi.org/10.1016/j.ygcen.2011.04.005
  17. Sutton, K. M., S. Hayat, N.-M. Chau, S. Cook, J. Pouyssegur, A. Ahmed, N. Perusinghe, R. Le Floch, J. Yang, and M. Ashcroft. 2007. Selective inhibition of MEK1/2 reveals a differential requirement for ERK1/2 signalling in the regulation of HIF-1 in response to hypoxia and IGF-1. Oncogene 26:3920-3929. https://doi.org/10.1038/sj.onc.1210168
  18. Wei, D.-B., L. Wei, J.-M. Zhang, and H.-Y. Yu. 2006. Blood-gas properties of plateau zokor (Myospalax baileyi). Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 145:372-375. https://doi.org/10.1016/j.cbpa.2006.07.011
  19. Weir, E., A. Tucker, J. Reeves, D. Will, and R. Grover. 1974. The genetic factor influencing pulmonary hypertension in cattle at high altitude1. Cardiovasc Res. 8:745-749. https://doi.org/10.1093/cvr/8.6.745
  20. Will, D. H., J. L. Hicks, C. S. Card, and A. F. Alexander. 1975. Inherited susceptibility of cattle to high-altitude pulmonary hypertension. J. Appl. Physiol. 38:491-494.
  21. Yu, J., J. Li, S. Zhang, X. Xu, M. Zheng, G. Jiang, and F. Li. 2012. IGF-1 induces hypoxia-inducible factor $1{\alpha}$-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells. Brain Res. 1430:18-24. https://doi.org/10.1016/j.brainres.2011.10.046
  22. Zhang, S., Y. Zhao, X. Hu, Z. Liu, X. Chen, X. Chen, and J. Du. 2013. Distinct post-transcriptional regulation of Igfbp1 gene by hypoxia in lowland mouse and Qinghai-Tibet plateau root vole Microtus oeconomus. Mol. Cell. Endocrinol. 376:33-42. https://doi.org/10.1016/j.mce.2013.05.025

Cited by

  1. Molecular characterization and tissue expression profiles of insulin-like growth factor binding protein-1 (IGFBP-1) in Chinese alligator Alligator sinensis during the active and hibernating periods vol.73, pp.3, 2018, https://doi.org/10.2478/s11756-018-0028-3
  2. Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet Plateau vol.7, pp.None, 2015, https://doi.org/10.7717/peerj.7645