Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Chan, Y.S., Gray, L.J., Kaplan, T. and Paulino, G.H. (2004), "Green's function for a two-dimensional exponentially graded elastic medium", Proc. R. Soc. London, Ser. A, 460(2046), 1689-1706. https://doi.org/10.1098/rspa.2003.1220
- Ding, H.J., Huang, D.J. and Chen, W.Q. (2007), "Elasticity solutions for plane anisotropic functionally graded beams", Int. J. Sol. Struct., 44(1), 176-196. https://doi.org/10.1016/j.ijsolstr.2006.04.026
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2009), "Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading", Sci. China Ser. G: Phys. Mech Astron, 52(8), 1244-1256. https://doi.org/10.1007/s11433-009-0152-8
- Leung, A.Y.T. and Zheng, J.J. (2007), "Closed form stress distribution in 2D elasticity for all boundary conditions", Appl. Math. Mech., 28(12), 1629-1642. https://doi.org/10.1007/s10483-007-1210-z
- Lim, C.W., Cui, S. and Yao, W.A. (2007), "On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported", Int. J. Sol. Struct., 44, 5396-5411. https://doi.org/10.1016/j.ijsolstr.2007.01.007
- Lu, C.F., Chen, W.Q., Xu, R.Q. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Sol. Struct., 45(1), 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94, 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007
- Nie, G.J., Zhong, Z. and Chen, S.P. (2013), "Analytical solution for a functionally graded beam with arbitrary graded material properties", Compos. Part B: Eng., 44, 274-282. https://doi.org/10.1016/j.compositesb.2012.05.029
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61, 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Tarn, J.Q., Tseng, W.D. and Chang, H.H. (2009), "A circular elastic cylinder under its own weight", Int. J. Sol. Struct., 46(14-15), 2886-2896. https://doi.org/10.1016/j.ijsolstr.2009.03.016
- Tarn, J.Q., Chang, H.H. and Tseng, W.D. (2010), "A Hamiltonian State Space Approach for 3D Analysis of Circular Cantilevers", J. Elast., 101(2), 207-237. https://doi.org/10.1007/s10659-010-9256-7
- Vel, S.S. (2010), "Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells", Compos. Struct., 92, 2712-2727. https://doi.org/10.1016/j.compstruct.2010.03.012
- Xu, X.S., Leung, A.Y.T., Gu, Q., Yang, H. and Zheng, J.J. (2008), "3D symplectic expansion for piezoelectric media", Int. J. Numer. Meth. Eng., 74, 1848-1871. https://doi.org/10.1002/nme.2238
- Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84, 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
- Yao, W.A. and Zhong, W.X. (2002), Symplectic Elasticity, Higher Education Press, Beijing, BJ, China. (in Chinese)
- Yao, W.A. and Xu, C. (2001), "A restudy of paradox on an elastic wedge based on the Hamiltonian system", J. Appl. Mech., 68, 678-681. https://doi.org/10.1115/1.1360184
- Yao, W.A. and Li, X.C. (2006), "Symplectic duality system on plane magnetoelectroelastic solids", Applied Appl. Math. Mech. (Engl. Ed.), 27(2), 195-205. https://doi.org/10.1007/s10483-006-0207-z
- Zhao, L. and Chen, W.Q. (2008), "On the numerical calculation in symplectic approach for elasticity problems", J. Zhejiang Univ. (Sci A), 9(5), 583-588. https://doi.org/10.1631/jzus.A0720124
- Zhao, L. and Chen, W.Q. (2009), "Symplectic analysis of plane problems of functionally graded piezoelectric materials", Mech. Mater., 41(12), 1330-1339. https://doi.org/10.1016/j.mechmat.2009.09.001
- Zhao, L. and Chen, W.Q. (2010), "Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework", Compos. Struct., 92(7), 1753-1761. https://doi.org/10.1016/j.compstruct.2009.11.029
- Zhao, L., Chen, W.Q. and Lu, C.F. (2012a), "New assessment on the Saint-Venant solutions for functionally graded materials beams", Mech. Res. Commun., 43, 1-6. https://doi.org/10.1016/j.mechrescom.2012.03.009
- Zhao, L., Chen, W.Q. and Lu, C.F. (2012b), "Two-dimensional complete rational analysis of functionally graded beams within symplectic framework", Appl. Math. Mech. -Engl. Ed., 33(10), 1225-1238. https://doi.org/10.1007/s10483-012-1617-8
- Zhao, L., Chen, W.Q. and Lu, C.F. (2012c), "Symplectic elasticity for bi-directional functionally graded materials", Mech. Mater., 54, 32-42. https://doi.org/10.1016/j.mechmat.2012.06.001
- Zhong, Y. and Li, R. (2009), "Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach", Mech. Res. Commun., 36(6), 707-714. https://doi.org/10.1016/j.mechrescom.2009.04.001
- Zhong, W.X. (1995), A New Systematic Methodology for Theory of Elasticity, Dalian University of Technology Press, Dalian, DL, China. (in Chinese)
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67, 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023