DOI QR코드

DOI QR Code

Effect of Acylation on the Structure of the Acyl Carrier Protein P

  • Received : 2015.10.03
  • Accepted : 2015.11.25
  • Published : 2015.12.20

Abstract

Acyl carrier protein is related with fatty acid biosynthesis in which specific enzymes are involved. Especially, acyl carrier protein (ACP) is the key component in the growing of fatty acid chain. ACP is the small, very acidic protein that covalently binds various intermediates of fatty acyl chain. Acylation of ACP is mediated by holo-acyl carrier protein synthase (ACPS), which transfers the 4'PP-moiety of CoA to the 36th residue Ser of apo ACP. Acyl carrier protein P (ACPP) is one of ACPs from Helicobacter plyori. The NMR structure of ACPP consists of four helices, which were reported previously. Here we show how acylation of ACPP can affect the overall structure of ACPP and figured out the contact surface of ACPP to acyl chain attached during expression of ACPP in E. coli. Based on the chemical shift perturbation data, the acylation of ACCP seems to affect the conformation of the long loop connecting helix I and helix II as well as the second short loop connecting helix II and helix III. The significant chemical shift change of Ile 54 upon acylation supports the contact of acyl chain and the second loop.

Keywords

References

  1. C.O. Rock, S. Jackowski, and J. E. Cronan, in Biochemistry of Lipids and Lipoproteins and Membranes (Vance, E.E., and Vance, J., Eds.) pp 35-74, Elsevier, Amsterdam (1996)
  2. L. Tang, A. C. Weissborn, and E. P. Kennedy, J. Bacteriol. 179, 3697 (1997) https://doi.org/10.1128/jb.179.11.3697-3705.1997
  3. J.-P. Issartl, V. Koronakis, and C. Hughes, Nature 351, 759 (1991) https://doi.org/10.1038/351759a0
  4. B. Shen, R. G. Summers, H. Gramajo, M. J. Bibb, and C. R. Hutchinson, J. Bacteriol. 174, 3818 (1992) https://doi.org/10.1128/jb.174.11.3818-3821.1992
  5. O. Geiger, H. P. Spaink, and E. P. Kennedy, J. Bacteriol. 173, 2872 (1991) https://doi.org/10.1128/jb.173.9.2872-2878.1991
  6. B. T. Vandem and J. E. Cronan, Annu. Rev. Microbiol. 43, 317 (1989) https://doi.org/10.1146/annurev.mi.43.100189.001533
  7. P. J. Jones, T. A. Holak, and J. H. Prestegard, Biochemistry 26, 3493 (1987) https://doi.org/10.1021/bi00386a037
  8. C. O. Rock and J. E. Cronan, 254, 9778 (1979)
  9. J. E. Cronan, J. Biol. Chem. 257, 5013 (1982)
  10. C. O. Rock, J. E. Cronan, and I. M. Armitage, J. Biol. Chem. 256, 2669 (1981)
  11. D. H. Keating and J. E. Cronan, J. Biol. Chem. 271, 15905 (1996) https://doi.org/10.1074/jbc.271.27.15905
  12. A. S. Flaman, J. M. Chen, S. C. Van Iderstine, and D. M. Byers, J. Biol. Chem. 276, 35934 (2001) https://doi.org/10.1074/jbc.M101849200
  13. M.-M. Keating, H. Gong, and D. M. Byers, Biochem. Biophy. Acta. 1601, 208 (2002)
  14. Y. Kim, and J. H. Prestegard, Biochemistry 28, 8792 (1989) https://doi.org/10.1021/bi00448a017
  15. K. H. Mayo, and J. H. Prestegard, Biochemistry 24, 7834 (1985) https://doi.org/10.1021/bi00347a049
  16. T. A. Holak, M. Nilges, J. H. Prestegard, A. M.Gronenborn, and G. M. Clore, Eur. J. Biochem. 175, 9 (1988) https://doi.org/10.1111/j.1432-1033.1988.tb14159.x
  17. Y. Kim, and J. H. Prestegard, Proteins 8, 377 (1990) https://doi.org/10.1002/prot.340080411
  18. M. P. Crump, J. Crosby, C. E. Dempsey, J. A. Parkinson, M. Murray, D. A. Hopwood, and T. J. Simpson, Biochemistry 36, 6000 (1997) https://doi.org/10.1021/bi970006+
  19. G-Y. Xu, A. Tam, L. Lin, J. Hixon, C. C. Fritz, and R. Powers, Structure 9, 277 (2001) https://doi.org/10.1016/S0969-2126(01)00586-X
  20. A. Roujeinikova, C. Baldock, W. J. Simson, J. Gilroy, P. J. Baker, A. R. Stuitje, D. W. Rice, A. R. Slabas, and J. B. Rafferty, Structure 10, 825 (2002) https://doi.org/10.1016/S0969-2126(02)00775-X
  21. H. C. Wong, G. Liu, Y.-M. Zhang, C. O. Rock, and J. Zheng, J. Biol. Chem. 277, 15874 (2002) https://doi.org/10.1074/jbc.M112300200
  22. K. D. Parris, L. Lin, A.Tam, R. Mathew, J. Hixon, M. Stahl, C. C. Fritz, J. Seehra, and W. S. Somers, Structure 8, 883 (2000) https://doi.org/10.1016/S0969-2126(00)00178-7
  23. Y.-M. Zhang, M. S. Rao, R. J. Heath, A. C. Price, A. J. Olson, C. O. Rock, and S. W. White, J. Biol. Chem. 276, 8231 (2001) https://doi.org/10.1074/jbc.M008042200
  24. S. J. Park, J. S. Kim, W. S. Son, and B. J. Lee. J. Biochem. 135, 337 (2004) https://doi.org/10.1093/jb/mvh041
  25. D. S. Wishart, B. D. Sykes, and F. M. Richards, Biochemistry 31, 1647 (1992) https://doi.org/10.1021/bi00121a010
  26. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
  27. H.-H. Kim, H.-K. Song, B.-J. Lee, and S. J. Park, J. Kor. Mag. Reson. Soc. 16, 2 (2015)
  28. S. J. Park, J. Kor. Mag. Reson. Soc. 18, 2 (2014)
  29. C. Nguyen, R. W. Haushalter, D. J. Lee, P. R. L. Markwick, J. Bruegger, G. Caldara-Festin, K. Finzel,D. R. Jackson, F. Ishikawa, B. O'Dowd, J. A. McCammon, S. J. Opella, S.-C. Tsai, and M. D. Burkart, Nature 505, 427 (2014) https://doi.org/10.1038/nature12810

Cited by

  1. Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals vol.20, pp.3, 2016, https://doi.org/10.6564/JKMRS.2016.20.3.076