DOI QR코드

DOI QR Code

Protonic Conduction Properties of Nanostructured Gd-doped CeO2 at Low Temperatures

  • Park, Hee Jung (Dep. of Advanced Materials Engineering, Daejeon University) ;
  • Shin, Jae Soo (Dep. of Advanced Materials Engineering, Daejeon University) ;
  • Choa, Yong Ho (Dep. of Chemical Engineering, Hanyang University) ;
  • Song, Han Bok (Dep. of Chemical Engineering, Hanyang University) ;
  • Lee, Ki Moon (Dep. of Physics, Kunsan Nat. University) ;
  • Lee, Kyu Hyoung (Dep. of Nano Applied Engineering, Kangwon Nat. University)
  • Received : 2015.08.28
  • Accepted : 2015.09.21
  • Published : 2015.11.30

Abstract

The electrical properties of nanostructured Gd-doped $CeO_2$ (n-GDC) as a function of temperature and water partial-pressure were investigated using ac and dc measurements. For n-GDC, protonic conductivity prevails under wet condition and at low temperatures (< $200^{\circ}C$), while oxygen ionic conductivity occurs at high temperatures (> $200^{\circ}C$) under both dry and wet conditions. The grain boundaries in n-GDC were highly selective, being conductive for protonic transport but resistive for oxygen ionic transport. The protonic conductivity reaches about $4{\times}10^{-7}S/cm$ at room temperature (RT).

Keywords

References

  1. R. Hino, K. Haga, H. Aita, and K. Sekita, "R&D on Hydrogen Production by High-Temperature Electrolysis of Steam," Nucl. Eng. Des., 233 [1-3] 363-75 (2004). https://doi.org/10.1016/j.nucengdes.2004.08.029
  2. K. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  3. F. Iguchi, N. Sata, T. Tsurui, and H. Yugami, "Microstructures and Grain Boundary Conductivity of $BaZr_{1-x}Y_xO_3 $ (x = 0.05, 0.10, 0.15) Ceramics," Solid State Ionics, 178 [7-10] 691-95 (2007). https://doi.org/10.1016/j.ssi.2007.02.019
  4. H. Bohn and T. Schober, "Electrical Conductivity of the High-Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," J. Am. Ceram. Soc., 83 [4] 768-72 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01272.x
  5. R. Slade, S. Flint, and N. Singh, "Investigation of Protonic Conduction in Yb- and Y-Doped Barium Zirconates," Solid State Ionics, 82 [3-4] 135-41 (1995). https://doi.org/10.1016/0167-2738(95)00212-8
  6. R. Cervera, Y. Oyama, S. Miyoshi, K. Kobayashi, T. Yagi, and S. Yamaguchi, "Structural Study and Proton Transport of Bulk Nanograined Y-doped $BaZrO_3$ Oxide Protonics Materials," Solid State Ionics, 179 [7-8] 236-42 (2008). https://doi.org/10.1016/j.ssi.2008.01.082
  7. X. Guo, "On the Degradation of Zirconia Ceramics during Low-Temperature Annealing in Water or Water Vapor," J. Phys. Chem. Solids, 60 [4] 539-46 (1999). https://doi.org/10.1016/S0022-3697(98)00301-1
  8. U. Anselmi-Tamburini, F. Maglia, G. Chiodelli, P. Riello, S. Bucella, and Z. Munir, "Enhanced Protonic Conductivity in Fully Dense Nanometric Cubic Zirconia," Appl. Phys. Lett., 89 163116-19 (2006). https://doi.org/10.1063/1.2360934
  9. S. Kim, U. Anselmi-Tamburini, H. Park, M. Martin, and Z. Munir, "Unprecedented Room-Temperature Electrical Power Generation using Nanoscale Fluorite-Structured Oxide Electrolytes," Adv. Mat., 20 [3] 556-59 (2008). https://doi.org/10.1002/adma.200700715
  10. S. Miyoshi, Y. Akao, N. Kuwata, J. Kawamura, Y. Oyama, T. Yagi, and S. Yamaguchi, "Low-Temperature Protonic Conduction Based on Surface Protonics: An Example of Nanostructured Yttria-Doped Zirconia," Chem. Mater., 26 [18] 5194-200 (2014). https://doi.org/10.1021/cm5012923
  11. M. Shirpour, G. Gregori, R. Merkle, and J. Maier, "On the Proton Conductivity in Pure and Gadolinium Doped Nanocrystalline Cerium Oxide," Phys. Chem. Chem. Phys., 13 [3] 937-40 (2011). https://doi.org/10.1039/C0CP01702G
  12. C. Tande, D. Perez-Coll, and G. Mather, "Surface Proton Conductivity of Dense Nanocrystalline YSZ," J. Mater. Chem., 22 11208-13 (2012). https://doi.org/10.1039/c2jm31414b
  13. S. Kim, H. Avila-Paredez, S. Wang, C. Chen, R. De Souza, M. Martin, and Z. Munir, "On the Conduction Pathway for Protons in Nano-Crystalline Yttria-Stabilized Zirconia," Phys. Chem. Chem. Phys., 11 [17] 3035-37 (2009). https://doi.org/10.1039/b901623f
  14. Y. Anselmi-Tamburini, G. Garay, and Z. Munir, "Dense nanostructured oxides with fine crystals prepared by field activation sintering"; US Patent 013, 872 (October, 26, 2006).
  15. H. Park and Y. Choa, "The Grain Boundary Conduction Property of Highly Dense and Nanostructured Yttrium-Doped Zirconia," Electro. Sol. St. Let., 13 [5] K49-52 (2010). https://doi.org/10.1149/1.3338992
  16. H. Park and G. Choi, "The Electrical Conductivity and Oxygen Permeation of Ceria with Alumina Addition at High Temperature," Solid State Ionics, 178 [33-34] 1746-55 (2008). https://doi.org/10.1016/j.ssi.2007.12.003
  17. T. Zhang, J. Ma, Y. Leng, S. Chan, P. Hing, and J. Kilner, "Effect of Transition Metal Oxides on Densification and Electrical Properties of Si-Containing $Ce_{0.8}Gd_{0.2}O_2$ Ceramics," Solid State Ionics, 168 [1-2] 187-95 (2004). https://doi.org/10.1016/j.ssi.2004.02.015
  18. S. Raz, K. Sasaki, J. Maier, and I. Riess, "Characterization of Adsorbed Water Layers on $Y_2O_3$-Doped $ZrO_2$," Solid State Ionics, 143 [2] 181-204 (2001). https://doi.org/10.1016/S0167-2738(01)00826-8