DOI QR코드

DOI QR Code

Transmission Electron Microscopy Investigation of Hot-pressed ZrB2-SiC with B4C Additive

  • Kim, Seongwon (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Chae, Jung-Min (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Byung-Koog (High Temperature Materials Unit, National Institute of Materials Science)
  • Received : 2015.09.09
  • Accepted : 2015.10.16
  • Published : 2015.11.30

Abstract

This paper reports the microstructure of hot-pressed $ZrB_2$-SiC ceramics with added $B_4C$ as characterized by transmission electron microscopy. $ZrB_2$ has a melting point of $3245^{\circ}C$, a relatively low density of $6.1g/cm^3$, and specific mechanical properties at an elevated temperature, making it a candidate for application to environments with ultra-high temperatures which exceed $2000^{\circ}C$. Due to the non-sinterability of $ZrB_2$-based ceramics, research on sintering aids such as $B_4C$ or $MoSi_2$ has become prominent recently. From TEM investigations, an amorphous layer with contaminant oxide is observed in the vicinity of $B_4C$ grains remaining in hot-pressed $ZrB_2$-SiC ceramics with $B_4C$ as an additive. The effect of a $B_4C$ addition on the microstructure of this system is also discussed.

Keywords

References

  1. F. Monteverde, S. Guicciardi, and A. Bellosi, "Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics," Mater. Sci. & Eng. A, 346 [1-2] 310-19 (2003). https://doi.org/10.1016/S0921-5093(02)00520-8
  2. M. J. Gasch, D. T. Ellerby, and S. M. Johnson, "Ultra High Temperature Ceramic Composites," pp. 197-224 in Handbook of Ceramic Composite. Ed. by N. P. Bansal, Kluwer Academic Publishers, Boston/Dordrecht/London, 2005.
  3. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, "Refractory Diborides of Zirconium and Hafnium," J. Am. Ceram. Soc., 90 [5] 1347-64 (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x
  4. S. Q. Guo, "Densification of Zrb2-Based Composites and Their Mechanical and Physical Properties: A Review," J. Eur. Ceram. Soc., 29 [6] 995-1011 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
  5. T. Mizuguchi, S. Q. Guo, and Y. Kagawa, "Transmission Electron Microscopy Characterization of Hot-Pressed $ZrB_2$ with $MoSi_2$ Additive," J. Am. Ceram. Soc., 92 [5] 1145-48 (2009). https://doi.org/10.1111/j.1551-2916.2009.03040.x
  6. J.-M. Chae, S.-M. Lee, Y.-S. Oh, H.-T. Kim, K.-J. Kim, S. Nahm, and S. Kim, "Effect of B4C Addition on the Microstructures and Mechanical Properties of $ZrB_2$- SiC Ceramics (in Korean)," J. Korean Ceram. Soc., 47 [6] 578-82 (2010). https://doi.org/10.4191/KCERS.2010.47.6.578
  7. D. D. Jayaseelan, Y. Wang, G. E. Hilmas, W. Fahrenholtz, P. Brown, and W. E. Lee, "TEM Investigation of Hot Pressed-10 Vol.% SiC-$ZrB_2$ Composite," Adv. in Appl. Ceram., 110 [1] 1-7 (2011). https://doi.org/10.1179/174367510X12722693956310
  8. V. Medri, F. Monteverde, A. Balbo, and A. Bellosi, "Comparison of $ZrB_2$-ZrC-SiC Composites Fabricated by Spark Plasma Sintering and Hot-Pressing," Adv. Eng. Mater., 7 [3] 159-63 (2005). https://doi.org/10.1002/adem.200400184
  9. A. Bellosi, F. D. Monteverde, and D. Sciti, "Fast Densification of Ultra-High-Temperature Ceramics by Spark Plasma Sintering," Int. J. Appl. Ceram. Technol., 3 [1] 32-40 (2006). https://doi.org/10.1111/j.1744-7402.2006.02060.x
  10. T. Mizuguchi, S. Q. Guo, and Y. Kagawa, "Transmission Electron Microscopy Characterization of Spark Plasma Sintered $ZrB_2$ Ceramic," Ceram. Int., 36 [3] 943-46 (2010). https://doi.org/10.1016/j.ceramint.2009.10.025
  11. G. J. Zhang, Z. Y. Deng, N. Kondo, J. F. Yang, and T. Ohji, "Reactive Hot Pressing of $ZrB_2$- SiC Composites," J. Am. Ceram. Soc., 83 [9] 2330-32 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01558.x
  12. J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, F. Monteverde, and A. Bellosi, "Fabrication and Properties of Reactively Hot Pressed $ZrB_2$- SiC Ceramics," J. Eur. Ceram. Soc., 27 [7] 2729-36 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.074
  13. S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, "Pressureless Densification of Zirconium Diboride with Boron Carbide Additions," J. Am. Ceram. Soc., 89 [5] 1544-50 (2006). https://doi.org/10.1111/j.1551-2916.2006.00949.x
  14. S. Zhu, W. G. Fahrenholtz, G. E. Hilmas, and S. C. Zhang, "Pressureless Sintering of Zirconium Diboride Using Boron Carbide and Carbon Additions," J. Am. Ceram. Soc., 90 [11] 3660-63 (2007). https://doi.org/10.1111/j.1551-2916.2007.01936.x
  15. S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, "Pressureless Sintering of $ZrB_2$-SiC Ceramics," J. Am. Ceram. Soc., 91 [1] 26-32 (2008). https://doi.org/10.1111/j.1551-2916.2007.02006.x
  16. S. Baik and P. F. Becher, "Effect of Oxygen Contamination on Densification of $TiB_2$," J. Am. Ceram. Soc., 70 [8] 527-30 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb05699.x
  17. L. C. Feldman and J. W. Mayer, "Fundamentals of Surface and Thin Film Analysis," Elsevier Science Publishing Co. Inc., New York, 1986.
  18. F. Monteverde and A. Bellosi, "Efficacy of HfN as Sintering Aid in the Manufacture of Ultrahigh-Temperature Metal Diborides-Matrix Ceramics," J. Mater. Res., 19 [12] 3576-85 (2004). https://doi.org/10.1557/JMR.2004.0460

Cited by

  1. ZrB2/HfB2-SiC Ceramics Modified by Refractory Carbides: An Overview vol.64, pp.14, 2015, https://doi.org/10.1134/s0036023619140079