References
- A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
- S. G. Hong, T. S. Byun, R. A. Lowden, L. L Snead, and Y. Katoh, "Evaluation of the Fracture Strength for Silicon Carbide Layers in the Tri-Isotropic-Coated Fuel Particle," J. Am. Ceram. Soc., 90 184-91 (2007). https://doi.org/10.1111/j.1551-2916.2005.01367.x
- R. Scholz, "Deuteron Irradiation Creep of Chemically Vapor Deposited Silicon Carbide Fibers," J. Nucl. Mater., 254 74-7 (1998). https://doi.org/10.1016/S0022-3115(97)00358-9
- C. H. Tang, Y. P. Tang, J. G. Zhu, Y. W. Zou, J. H. Li, and X. J. Ni, "Design and Manufacture of the Fuel Element for the 10 MW High Temperature Gas-Cooled Reactor," Nucl. Eng. Des., 91-102 (2002).
- S. Nakao, T. A, K. Sato, "Mechanical Characterization of SiC Film at High Temperatures by Tensile Test," IEEE, MEMS 2008, Tucson, AZ, USA, January 13-17, 2008.
- W.N. Sharpe, O. Jadaan, G. M. Beheim, G. D. Quinn, and N. N Nemeth, "Fracture Strength of Silicon Carbide Micro Specimens," J. Microelectromech. Syst., 14 903-13 (2005). https://doi.org/10.1109/JMEMS.2005.851862
- T. D. Gulden, C. L. Smith, and D. P Harmon, "Mechanical Design of TRISO-Coated Particle Fuels for the Large HTGR," Nucl. Technol., 16 100-9 (1972). https://doi.org/10.13182/NT72-A31179
- H. Nabielek, W. Kuhnlein, and W. Schenk, "Development of Advanced HTR Fuel Elements," Nucl. Eng. Des., 121 199-210 (1990). https://doi.org/10.1016/0029-5493(90)90105-7
-
B. G. Kim, Y. Choi, J. W. Lee, Y. W. Lee, D. S. Sohn, and G. M. Kim, "Multi-Layer Coating of Silicon Carbide and Pyrolytic Carbon on
$UO_2$ Pellets by a Combustion Reaction," J. Nucl. Mater., 281 163-70 (2000). https://doi.org/10.1016/S0022-3115(00)00365-2 - G. K. Miller, D. A. Petti, D. J. Varacalle, and J. T. Maki, "Statistical Approach and Benchmarking for Modeling of Multi-Dimensional Behavior in TRISO-Coated Fuel Particles," J. Nucl. Mater., 317 69-82 (2003). https://doi.org/10.1016/S0022-3115(02)01702-6
- K. Minato and K. Fukuda, "Chemical Vapor Deposition of Silicon Carbide for Coated Fuel Particles," J. Nucl. Mater., 149 233-46 (1987). https://doi.org/10.1016/0022-3115(87)90482-X
- H. Nickel, H. Nabielek, G. Pott, and A.W. Mehner, "Long Time Experience with the Development of HTR Fuel Elements in Germany," Nucl. Eng. Des., 217 141-51 (2002). https://doi.org/10.1016/S0029-5493(02)00128-0
- S. J Xu, J. G. Zhou, B. Yang, and B. Z. Zhang, "Effect of Deposition Temperature on the Properties of Pyrolytic SiC," J. Nucl. Mater., 224 12-6 (1995). https://doi.org/10.1016/0022-3115(95)00039-9
- J. H. Kim, H. K. Lee, and D. K. Kim, "Strength Measurement of a Brittle Coating with a Trilayer Structure Using Instrumented Indentation and in situ Observation Techniques," Philos. Mag., 86 5383-96 (2006). https://doi.org/10.1080/14786430600796569
- E. H. Lopez, P. J. Meadows, J. Tan, and P. Xiao, "Control of Stoichiometry, Microstructure, and Mechanical Properties in SiC Coatings Produced by Fluidized Bed Chemical Vapor Deposition," J. Mater. Res., 23 1785-96 (2008). https://doi.org/10.1557/JMR.2008.0220
- M. T. Lin, P. El-Deiry, R. R. Chromik, N. Barbosa, W. L. Brown, T. J. Delph, and R. P Vinci, "Temperature-Dependent Microtensile Testing of Thin Film Materials for Application to Microelectromechanical System," Microsyst. Technol., 12 1045-51 (2006). https://doi.org/10.1007/s00542-006-0129-8
- R. Liu, H. Wang, X. P Li, G. F. Ding, and C. S. Yang, "A Micro-tensile Method for Measuring Mechanical Properties of MEMS Materials," J. Micromech. Microeng., 18 65002-7 (2008). https://doi.org/10.1088/0960-1317/18/6/065002
- R. Modlinski, R. Puers, and I. D. Wolf, "AlCuMgMn Micro-Tensile Samples - Mechanical Characterization of MEMS Materials at Micro-Scale," Sens. Actuators. A. Phys., 143 120-28 (2008). https://doi.org/10.1016/j.sna.2007.07.037
- J. H. Park, M. S. Myung, and Y. J. Kim, "Tensile and High Cycle Fatigue Test of Al-3% Ti Thin Films," Sens. Actuators. A. Phys., 147 561-69 (2008). https://doi.org/10.1016/j.sna.2008.06.003
- W. N. Sharpe, G. M. Beheim, L. J. Evans, N. N. Nemeth, and O. M. Jadaan, "Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at 24 Degrees C and 1000 Degrees C," J. Microelectromech. Syst., 17 244-54 (2008). https://doi.org/10.1109/JMEMS.2007.912727
- D. J. Kim, D. J. Choi, Y. W. Kim, "Effect of Reactant Depletion on the Microstructure and Preferred Orientation of Polycrystalline Sic Films by Chemical-Vapor-Deposition," Thin Solid Films, 266 192-97 (1995). https://doi.org/10.1016/0040-6090(96)80023-X
- H. S. Kim and D. J. Choi, "The Reactant Depletion Effect on Chemically Vapor Deposited SiC Films with Pressure and Gas Ambient," Thin Solid Films, 312 195-201 (1998). https://doi.org/10.1016/S0040-6090(97)00744-X
- Soda-lime glass. Data sheet, CiDRA Precision Services; LLC.
- Soda-lime glass. Data sheet, Metroglasstech.
- Soda-lime glass. Data sheet, Fa. Technolgas.
- M. K. C. Holden and V. D. Frechette, "Healing of Glass in Humid Environments," J. Am. Ceram. Soc., 72 2189-93(1989). https://doi.org/10.1111/j.1151-2916.1989.tb06057.x
- T. E. Wilantewicz and J. R. Varner, "Vickers Indentation Behavior of Several Commercial Glasses at High Temperatures," J. Mater. Sci., 43 281-98 (2008). https://doi.org/10.1007/s10853-007-2174-9
- B. A. Wilson and E. D. Case, "In situ Microscopy of Crack Healing in Borosilicate Glass," J. Mater. Sci., 32 3163-75 (1997). https://doi.org/10.1023/A:1018698600884
- A. Elkind and M. W. Barsoum, "Grain Growth and Strength Degradation of SiC Monofilaments at High Temperatures," J. Mater. Sci., 31 6119-23 (1996). https://doi.org/10.1007/BF00354427
- H. Zhang, J. Tian, W. Tang, and F. Lu, "Correlation between Fracture Strength and Crystal Orientation of Freestanding Diamond Films," Carbon, 41 579-625 (2003). https://doi.org/10.1016/S0008-6223(02)00339-1
- B. Liu, T. X. Hang, and C. H. Tang, "A Review of TRISOcoated Particle Nuclear Fuel Performance Models," Rare Metals, 25 337-42 (2006).
- R. J. Price and G. R. Hopkins, "Flexural Strength of Proof-Tested and Neutron-Irradiated Silicon Carbide," J. Nucl. Mater., 108 &109 732-38 (1982).
- B. O. Yavuz and R. E. Tressler, "High Temperature Mechanical Behavior of a Chemically Vapor Deposited Beta Silicon Carbide," Ceram. Int., 18 19-26 (1992). https://doi.org/10.1016/0272-8842(92)90057-K
- A. Briggs, R. W. Davidge, C. Padgett, and S. Quickenden, "Crushing Behavior of High Temperature Reactor Coated Fuel Particles," J. Nucl. Mater., 61 233-42 (1976). https://doi.org/10.1016/0022-3115(76)90262-2
- A. Naoumidis, R. Benz, and J. Rottman, "Identification of Silicon in Small Quantities of SiC-Coated and SiC (TRISO)-Coated Nuclear Fuel Particles," High. Temp. High. Press., 14 53-63 (1982).
Cited by
- Processing of fully ceramic microencapsulated fuels with a small amount of additives by hot-pressing vol.41, pp.7, 2021, https://doi.org/10.1016/j.jeurceramsoc.2021.02.020
- Effects of sample bias on adhesion of magnetron sputtered Cr coatings on SiC vol.556, pp.None, 2015, https://doi.org/10.1016/j.jnucmat.2021.153251