DOI QR코드

DOI QR Code

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Kwi-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Ji-Yeon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Weon-Ju (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Do Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2015.09.01
  • Accepted : 2015.10.27
  • Published : 2015.11.30

Abstract

Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

Keywords

References

  1. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  2. S. G. Hong, T. S. Byun, R. A. Lowden, L. L Snead, and Y. Katoh, "Evaluation of the Fracture Strength for Silicon Carbide Layers in the Tri-Isotropic-Coated Fuel Particle," J. Am. Ceram. Soc., 90 184-91 (2007). https://doi.org/10.1111/j.1551-2916.2005.01367.x
  3. R. Scholz, "Deuteron Irradiation Creep of Chemically Vapor Deposited Silicon Carbide Fibers," J. Nucl. Mater., 254 74-7 (1998). https://doi.org/10.1016/S0022-3115(97)00358-9
  4. C. H. Tang, Y. P. Tang, J. G. Zhu, Y. W. Zou, J. H. Li, and X. J. Ni, "Design and Manufacture of the Fuel Element for the 10 MW High Temperature Gas-Cooled Reactor," Nucl. Eng. Des., 91-102 (2002).
  5. S. Nakao, T. A, K. Sato, "Mechanical Characterization of SiC Film at High Temperatures by Tensile Test," IEEE, MEMS 2008, Tucson, AZ, USA, January 13-17, 2008.
  6. W.N. Sharpe, O. Jadaan, G. M. Beheim, G. D. Quinn, and N. N Nemeth, "Fracture Strength of Silicon Carbide Micro Specimens," J. Microelectromech. Syst., 14 903-13 (2005). https://doi.org/10.1109/JMEMS.2005.851862
  7. T. D. Gulden, C. L. Smith, and D. P Harmon, "Mechanical Design of TRISO-Coated Particle Fuels for the Large HTGR," Nucl. Technol., 16 100-9 (1972). https://doi.org/10.13182/NT72-A31179
  8. H. Nabielek, W. Kuhnlein, and W. Schenk, "Development of Advanced HTR Fuel Elements," Nucl. Eng. Des., 121 199-210 (1990). https://doi.org/10.1016/0029-5493(90)90105-7
  9. B. G. Kim, Y. Choi, J. W. Lee, Y. W. Lee, D. S. Sohn, and G. M. Kim, "Multi-Layer Coating of Silicon Carbide and Pyrolytic Carbon on $UO_2$ Pellets by a Combustion Reaction," J. Nucl. Mater., 281 163-70 (2000). https://doi.org/10.1016/S0022-3115(00)00365-2
  10. G. K. Miller, D. A. Petti, D. J. Varacalle, and J. T. Maki, "Statistical Approach and Benchmarking for Modeling of Multi-Dimensional Behavior in TRISO-Coated Fuel Particles," J. Nucl. Mater., 317 69-82 (2003). https://doi.org/10.1016/S0022-3115(02)01702-6
  11. K. Minato and K. Fukuda, "Chemical Vapor Deposition of Silicon Carbide for Coated Fuel Particles," J. Nucl. Mater., 149 233-46 (1987). https://doi.org/10.1016/0022-3115(87)90482-X
  12. H. Nickel, H. Nabielek, G. Pott, and A.W. Mehner, "Long Time Experience with the Development of HTR Fuel Elements in Germany," Nucl. Eng. Des., 217 141-51 (2002). https://doi.org/10.1016/S0029-5493(02)00128-0
  13. S. J Xu, J. G. Zhou, B. Yang, and B. Z. Zhang, "Effect of Deposition Temperature on the Properties of Pyrolytic SiC," J. Nucl. Mater., 224 12-6 (1995). https://doi.org/10.1016/0022-3115(95)00039-9
  14. J. H. Kim, H. K. Lee, and D. K. Kim, "Strength Measurement of a Brittle Coating with a Trilayer Structure Using Instrumented Indentation and in situ Observation Techniques," Philos. Mag., 86 5383-96 (2006). https://doi.org/10.1080/14786430600796569
  15. E. H. Lopez, P. J. Meadows, J. Tan, and P. Xiao, "Control of Stoichiometry, Microstructure, and Mechanical Properties in SiC Coatings Produced by Fluidized Bed Chemical Vapor Deposition," J. Mater. Res., 23 1785-96 (2008). https://doi.org/10.1557/JMR.2008.0220
  16. M. T. Lin, P. El-Deiry, R. R. Chromik, N. Barbosa, W. L. Brown, T. J. Delph, and R. P Vinci, "Temperature-Dependent Microtensile Testing of Thin Film Materials for Application to Microelectromechanical System," Microsyst. Technol., 12 1045-51 (2006). https://doi.org/10.1007/s00542-006-0129-8
  17. R. Liu, H. Wang, X. P Li, G. F. Ding, and C. S. Yang, "A Micro-tensile Method for Measuring Mechanical Properties of MEMS Materials," J. Micromech. Microeng., 18 65002-7 (2008). https://doi.org/10.1088/0960-1317/18/6/065002
  18. R. Modlinski, R. Puers, and I. D. Wolf, "AlCuMgMn Micro-Tensile Samples - Mechanical Characterization of MEMS Materials at Micro-Scale," Sens. Actuators. A. Phys., 143 120-28 (2008). https://doi.org/10.1016/j.sna.2007.07.037
  19. J. H. Park, M. S. Myung, and Y. J. Kim, "Tensile and High Cycle Fatigue Test of Al-3% Ti Thin Films," Sens. Actuators. A. Phys., 147 561-69 (2008). https://doi.org/10.1016/j.sna.2008.06.003
  20. W. N. Sharpe, G. M. Beheim, L. J. Evans, N. N. Nemeth, and O. M. Jadaan, "Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at 24 Degrees C and 1000 Degrees C," J. Microelectromech. Syst., 17 244-54 (2008). https://doi.org/10.1109/JMEMS.2007.912727
  21. D. J. Kim, D. J. Choi, Y. W. Kim, "Effect of Reactant Depletion on the Microstructure and Preferred Orientation of Polycrystalline Sic Films by Chemical-Vapor-Deposition," Thin Solid Films, 266 192-97 (1995). https://doi.org/10.1016/0040-6090(96)80023-X
  22. H. S. Kim and D. J. Choi, "The Reactant Depletion Effect on Chemically Vapor Deposited SiC Films with Pressure and Gas Ambient," Thin Solid Films, 312 195-201 (1998). https://doi.org/10.1016/S0040-6090(97)00744-X
  23. Soda-lime glass. Data sheet, CiDRA Precision Services; LLC.
  24. Soda-lime glass. Data sheet, Metroglasstech.
  25. Soda-lime glass. Data sheet, Fa. Technolgas.
  26. M. K. C. Holden and V. D. Frechette, "Healing of Glass in Humid Environments," J. Am. Ceram. Soc., 72 2189-93(1989). https://doi.org/10.1111/j.1151-2916.1989.tb06057.x
  27. T. E. Wilantewicz and J. R. Varner, "Vickers Indentation Behavior of Several Commercial Glasses at High Temperatures," J. Mater. Sci., 43 281-98 (2008). https://doi.org/10.1007/s10853-007-2174-9
  28. B. A. Wilson and E. D. Case, "In situ Microscopy of Crack Healing in Borosilicate Glass," J. Mater. Sci., 32 3163-75 (1997). https://doi.org/10.1023/A:1018698600884
  29. A. Elkind and M. W. Barsoum, "Grain Growth and Strength Degradation of SiC Monofilaments at High Temperatures," J. Mater. Sci., 31 6119-23 (1996). https://doi.org/10.1007/BF00354427
  30. H. Zhang, J. Tian, W. Tang, and F. Lu, "Correlation between Fracture Strength and Crystal Orientation of Freestanding Diamond Films," Carbon, 41 579-625 (2003). https://doi.org/10.1016/S0008-6223(02)00339-1
  31. B. Liu, T. X. Hang, and C. H. Tang, "A Review of TRISOcoated Particle Nuclear Fuel Performance Models," Rare Metals, 25 337-42 (2006).
  32. R. J. Price and G. R. Hopkins, "Flexural Strength of Proof-Tested and Neutron-Irradiated Silicon Carbide," J. Nucl. Mater., 108 &109 732-38 (1982).
  33. B. O. Yavuz and R. E. Tressler, "High Temperature Mechanical Behavior of a Chemically Vapor Deposited Beta Silicon Carbide," Ceram. Int., 18 19-26 (1992). https://doi.org/10.1016/0272-8842(92)90057-K
  34. A. Briggs, R. W. Davidge, C. Padgett, and S. Quickenden, "Crushing Behavior of High Temperature Reactor Coated Fuel Particles," J. Nucl. Mater., 61 233-42 (1976). https://doi.org/10.1016/0022-3115(76)90262-2
  35. A. Naoumidis, R. Benz, and J. Rottman, "Identification of Silicon in Small Quantities of SiC-Coated and SiC (TRISO)-Coated Nuclear Fuel Particles," High. Temp. High. Press., 14 53-63 (1982).

Cited by

  1. Processing of fully ceramic microencapsulated fuels with a small amount of additives by hot-pressing vol.41, pp.7, 2021, https://doi.org/10.1016/j.jeurceramsoc.2021.02.020
  2. Effects of sample bias on adhesion of magnetron sputtered Cr coatings on SiC vol.556, pp.None, 2015, https://doi.org/10.1016/j.jnucmat.2021.153251