References
- Buschmann, C. and H. K. Lichtenthaler. 1998. Principles and characteristics of multi-colour fluorescence imaging of plants. Journal of Plant Physiology 152:297-314. https://doi.org/10.1016/S0176-1617(98)80144-2
- Caires, A. R. L., M. D. Scherer, T. S. B. Santos, B. C. A. Pontim, W. L. Gavassoni and S. L. Oliveira. 2010. Water Stress Response of Conventional and Transgenic Soybean Plants Monitored by Chlorophyll a Fluorescence. Journal of Fluorescence 20:645-649. https://doi.org/10.1007/s10895-009-0594-4
- Chang, A., J. Y. Choi, S. W. Lee, D. H. Kim and S. C. Bae. 2011. Agricultural biotechnology: Opportunities and challenges associated with climate change. Korean Journal of Plant Biotechnology 38:117-124. https://doi.org/10.5010/JPB.2011.38.2.117
- Dahn, H. G., K. P. Gunther and W. Ludeker. 1992. Characterisation of drought stress of maize and wheat canopies by means of spectral resolved laser induced fluorescence. Advances in Remote Sensing 1:12-19.
- Duan, L. F., W. N. Yang, C. L. Huang and Q. Liu. 2011. A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods 7:44. https://doi.org/10.1186/1746-4811-7-44
- Gitelson, A. A., C. Buschmann and H. K. Lichtenthaler. 1998. Leaf chlorophyll fluorescence corrected for reabsorption by means of absorption and reflectance measurements. Journal of Plant Physiology 152:283-296. https://doi.org/10.1016/S0176-1617(98)80143-0
- Gross, J. 1991. Pigments in Vegetables: Chlorophylls and Carotenoids. New York, N.Y.: Van Nostrand Reinhold.
- Houle, D., D. R. Govindaraju and S. Omholt. 2010. Phenomics: the next challenge. Nature Reviews Genetics 11(12):855-866. https://doi.org/10.1038/nrg2897
- Kim, M. S., Y. R. Chen and P. M. Mehl. 2001. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the American Society of Agricultural Engineers 44(3):721-729.
- Manickavasagan, A., D. Jayas and N. White. 2008. Thermal imaging to detect infestation by cryptolestes ferrugineus inside wheat kernels. Journal of Stored Products Research 44:186-192. https://doi.org/10.1016/j.jspr.2007.10.006
- Nguyen, H. T. and B. -W. Lee. 2006. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy 24:349-356. https://doi.org/10.1016/j.eja.2006.01.001
- Rahaman, Md. M., D. Chen, Z. Gillani, C. Klukas and M. Chen. 2015. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Frontiers in Plant Science 6(619):1-15.
- Rousseau, C., E. Belin, E. Bove, D. Rousseau, F. Fabre, R. Berruyer, J. Guillaumès, C. Manceau, M. A. Jacques and T. Boureau. 2013. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17. https://doi.org/10.1186/1746-4811-9-17
- Shibayama, M., T. Sakamoto, E. Takada, A. Inoue, K. Morita, T. Yamaguchi, W. Takahashi and A. Kimura. 2011. Regression-based models to predict rice leaf area index using biennial fixed point continuous observations of near infrared digital images. Plant Production Science 14:365-376. https://doi.org/10.1626/pps.14.365
- Woo, N. S., M. R. Badger and B. J. Pogson. 2008. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27. https://doi.org/10.1186/1746-4811-4-27
Cited by
- Application of Fourier transform-mid infrared reflectance spectroscopy for monitoring Korean traditional rice wine ‘Makgeolli’ fermentation vol.230, 2016, https://doi.org/10.1016/j.snb.2016.02.076
- Detection of cucumber green mottle mosaic virus-infected watermelon seeds using a near-infrared (NIR) hyperspectral imaging system: Application to seeds of the “Sambok Honey” cultivar vol.148, 2016, https://doi.org/10.1016/j.biosystemseng.2016.05.014
- Estimating Moisture Content of Cucumber Seedling Using Hyperspectral Imagery vol.41, pp.3, 2016, https://doi.org/10.5307/JBE.2016.41.3.273
- Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging vol.97, pp.4, 2017, https://doi.org/10.1002/jsfa.7832
- Close range hyperspectral imaging of plants: A review vol.164, 2017, https://doi.org/10.1016/j.biosystemseng.2017.09.009