DOI QR코드

DOI QR Code

Promotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination

  • Kim, Suhyun (Department of Biomedical Sciences, Korea University) ;
  • Lee, Yun-Il (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Chang, Ki-Young (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Lee, Dong-Won (Department of Biomedical Sciences, Korea University) ;
  • Cho, Sung Chun (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Ha, Young Wan (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Na, Ji Eun (Department of Anatomy, College of Medicine, Korea University) ;
  • Rhyu, Im Joo (Department of Anatomy, College of Medicine, Korea University) ;
  • Park, Sang Chul (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Park, Hae-Chul (Department of Biomedical Sciences, Korea University)
  • Received : 2015.09.15
  • Accepted : 2015.10.13
  • Published : 2015.11.30

Abstract

Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases. Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.

Keywords

References

  1. Asakawa, K., and Kawakami, K. (2008). Targeted gene expression by the Gal4-UAS system in zebrafish. Dev. Growth. Differ. 50, 391-399. https://doi.org/10.1111/j.1440-169X.2008.01044.x
  2. Bhasin, M., Wu, M., and Tsirka, S.E. (2007). Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol. 8, 10. https://doi.org/10.1186/1471-2172-8-10
  3. Brend, T., and Holley, S.A. (2009). Zebrafish whole mount high-resolution double fluorescent in situ hybridization. J. Vis. Exp. 25, pii: 1229.
  4. Chung, A.Y., Kim, P.S., Kim, S., Kim, E., Kim, D., Jeong, I., Kim, H.K., Ryu, J.H., Kim, C.H., Choi, J., et al. (2013). Generation of demyelination models by targeted ablation of oligodendrocytes in the zebrafish CNS. Mol. Cells 36, 82-87. https://doi.org/10.1007/s10059-013-0087-9
  5. Dale, J., Alcorn, N., Capell, H., and Madhok, R. (2007). Combination therapy for rheumatoid arthritis: methotrexate and sulfasalazine together or with other DMARDs. Nat. Clin. Pract. Rheumatol. 3, 450-458; quiz, following 478.
  6. Emery, B. (2010). Regulation of oligodendrocyte differentiation and myelination. Science 330, 779-782. https://doi.org/10.1126/science.1190927
  7. Fantin, A., Vieira, J.M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., Peri, F., Wilson, S.W., and Ruhrberg, C. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829-840. https://doi.org/10.1182/blood-2009-12-257832
  8. Franklin, R.J. (2002). Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705-714. https://doi.org/10.1038/nrn917
  9. Franklin, R.J., and Ffrench-Constant, C. (2008). Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839-855. https://doi.org/10.1038/nrn2480
  10. Heppner, F.L., Greter, M., Marino, D., Falsig, J., Raivich, G., Hovelmeyer, N., Waisman, A., Rulicke, T., Prinz, M., Priller, J., et al. (2005). Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146-152. https://doi.org/10.1038/nm1177
  11. Hoult, J.R. (1986). Pharmacological and biochemical actions of sulphasalazine. Drugs 32 Suppl 1, 18-26. https://doi.org/10.2165/00003495-198600321-00005
  12. Imai, M., Watanabe, M., Suyama, K., Osada, T., Sakai, D., Kawada, H., Matsumae, M., and Mochida, J. (2008). Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. J. Neurosurg. Spine 8, 58-66. https://doi.org/10.3171/SPI-08/01/058
  13. Jurevics, H., Largent, C., Hostettler, J., Sammond, D.W., Matsushima, G.K., Kleindienst, A., Toews, A.D., and Morell, P. (2002). Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J. Neurochem. 82, 126-136. https://doi.org/10.1046/j.1471-4159.2002.00954.x
  14. Kim, H.T., Kim, I.H., Lee, K.J., Lee, J.R., Park, S.K., Chun, Y.H., Kim, H., and Rhyu, I.J. (2002). Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning. Neuroreport 13, 1607-1610. https://doi.org/10.1097/00001756-200209160-00007
  15. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. https://doi.org/10.1002/aja.1002030302
  16. Kotter, M.R., Setzu, A., Sim, F.J., Van Rooijen, N., and Franklin, R.J. (2001). Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35, 204-212. https://doi.org/10.1002/glia.1085
  17. Kotter, M.R., Zhao, C., van Rooijen, N., and Franklin, R.J. (2005). Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol. Dis. 18, 166-175. https://doi.org/10.1016/j.nbd.2004.09.019
  18. Kotter, M.R., Li, W.W., Zhao, C., and Franklin, R.J. (2006). Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328-332. https://doi.org/10.1523/JNEUROSCI.2615-05.2006
  19. Lau, L.W., Keough, M.B., Haylock-Jacobs, S., Cua, R., Doring, A., Sloka, S., Stirling, D.P., Rivest, S., and Yong, V.W. (2012). Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann. Neurol. 72, 419-432. https://doi.org/10.1002/ana.23599
  20. Lee, Y., Morrison, B.M., Li, Y., Lengacher, S., Farah, M.H., Hoffman, P.N., Liu, Y., Tsingalia, A., Jin, L., Zhang, P.W., et al. (2012). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443-448. https://doi.org/10.1038/nature11314
  21. Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707-717. https://doi.org/10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
  22. Martiney, J.A., Rajan, A.J., Charles, P.C., Cerami, A., Ulrich, P.C., Macphail, S., Tracey, K.J., and Brosnan, C.F. (1998). Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent. J. Immunol. 160, 5588-5595.
  23. Marz, M., Schmidt, R., Rastegar, S., and Strahle, U. (2011). Regenerative response following stab injury in the adult zebrafish telencephalon. Dev. Dyn. 240, 2221-2231. https://doi.org/10.1002/dvdy.22710
  24. Miron, V.E., and Franklin, R.J. (2014). Macrophages and CNS remyelination. J. Neurochem. 130, 165-171. https://doi.org/10.1111/jnc.12705
  25. Moharregh-Khiabani, D., Blank, A., Skripuletz, T., Miller, E., Kotsiari, A., Gudi, V., and Stangel, M. (2010). Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PLoS One 5, e11769. https://doi.org/10.1371/journal.pone.0011769
  26. Munzel, E.J., Schaefer, K., Obirei, B., Kremmer, E., Burton, E.A., Kuscha, V., Becker, C.G., Brosamle, C., Williams, A., and Becker, T. (2012). Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia 60, 253-270. https://doi.org/10.1002/glia.21260
  27. Olah, M., Amor, S., Brouwer, N., Vinet, J., Eggen, B., Biber, K., and Boddeke, H.W. (2012). Identification of a microglia phenotype supportive of remyelination. Glia 60, 306-321. https://doi.org/10.1002/glia.21266
  28. Pasquini, L.A., Calatayud, C.A., Bertone Una, A.L., Millet, V., Pasquini, J.M., and Soto, E.F. (2007). The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of proinflammatory cytokines secreted by microglia. Neurochem. Res. 32, 279-292. https://doi.org/10.1007/s11064-006-9165-0
  29. Pavelko, K.D., van Engelen, B.G., and Rodriguez, M. (1998). Acceleration in the rate of CNS remyelination in lysolecithin-induced demyelination. J. Neurosci. 18, 2498-2505. https://doi.org/10.1523/JNEUROSCI.18-07-02498.1998
  30. Peppercorn, M.A. (1984). Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med. 101, 377-386. https://doi.org/10.7326/0003-4819-101-3-377
  31. Plosker, G.L., and Croom, K.F. (2005). Sulfasalazine: a review of its use in the management of rheumatoid arthritis. Drugs 65, 1825-1849. https://doi.org/10.2165/00003495-200565130-00008
  32. Prineas, J.W., and Wright, R.G. (1978). Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab. Invest. 38, 409-421.
  33. Prineas, J.W., and Connell, F. (1979). Remyelination in multiple sclerosis. Ann. Neurol. 5, 22-31. https://doi.org/10.1002/ana.410050105
  34. Ransohoff, R.M. (2012). Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074-1077. https://doi.org/10.1038/nn.3168
  35. Rawji, K.S., and Yong, V.W. (2013). The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin. Dev. Immunol. 2013, 948976.
  36. Schonberg, D.L., Popovich, P.G., and McTigue, D.M. (2007). Oligodendrocyte generation is differentially influenced by toll-like receptor (TLR) 2 and TLR4-mediated intraspinal macrophage activation. J. Neuropathol. Exp. Neurol. 66, 1124-1135. https://doi.org/10.1097/nen.0b013e31815c2530
  37. Schonrock, L.M., Kuhlmann, T., Adler, S., Bitsch, A., and Bruck, W. (1998). Identification of glial cell proliferation in early multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 24, 320-330. https://doi.org/10.1046/j.1365-2990.1998.00131.x
  38. Shin, J., Park, H.C., Topczewska, J.M., Mawdsley, D.J., and Appel, B. (2003). Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell. Sci. 25, 7-14. https://doi.org/10.1023/B:MICS.0000006847.09037.3a
  39. Silvestroff, L., Bartucci, S., Pasquini, J., and Franco, P. (2012). Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp. Neurol. 235, 357-367. https://doi.org/10.1016/j.expneurol.2012.02.018
  40. Skripuletz, T., Miller, E., Moharregh-Khiabani, D., Blank, A., Pul, R., Gudi, V., Trebst, C., and Stangel, M. (2010). Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem. Res. 35, 1422-1433. https://doi.org/10.1007/s11064-010-0202-7
  41. Skripuletz, T., Hackstette, D., Bauer, K., Gudi, V., Pul, R., Voss, E., Berger, K., Kipp, M., Baumgartner, W., and Stangel, M. (2013). Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136, 147-167. https://doi.org/10.1093/brain/aws262
  42. Tedde, A., Cellini, E., Bagnoli, S., Sorbi, S., and Peri, A. (2008). Mutational screening analysis of DHCR24/seladin-1 gene in Italian familial Alzheimer's disease. Am J. Med. Genet. B Neuropsychiatr. Genet. 147B, 117-119. https://doi.org/10.1002/ajmg.b.30573
  43. Voas, M.G., Lyons, D.A., Naylor, S.G., Arana, N., Rasband, M.N., and Talbot, W.S. (2007). alphaII-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr. Biol. 17, 562-568.
  44. Wilson, H.C., Scolding, N.J., and Raine, C.S. (2006). Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J. Neuroimmunol. 176, 162-173. https://doi.org/10.1016/j.jneuroim.2006.04.014
  45. Zenlea, T., and Peppercorn, M.A. (2014). Immunosuppressive therapies for inflammatory bowel disease. World J. Gastroenterol. 20, 3146-3152. https://doi.org/10.3748/wjg.v20.i12.3146

Cited by

  1. Serendipity in Search for Longevity from Experiences of Hansen People 2017, https://doi.org/10.1016/j.tma.2017.06.001
  2. Imaging Myelination In Vivo Using Transparent Animal Models vol.2, pp.1, 2016, https://doi.org/10.3233/BPL-160029
  3. Confused Connections? Targeting White Matter to Address Treatment Resistant Schizophrenia vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.01172
  4. Animal models of multiple sclerosis: From rodents to zebrafish pp.1477-0970, 2018, https://doi.org/10.1177/1352458518805246
  5. Pharmacotherapy in Secondary Progressive Multiple Sclerosis: An Overview vol.32, pp.6, 2018, https://doi.org/10.1007/s40263-018-0538-0
  6. Corrigendum: Confused Connections? Targeting White Matter to Address Treatment Resistant Schizophrenia vol.9, pp.None, 2015, https://doi.org/10.3389/fphar.2018.01417
  7. Experimental Models of Neuroimmunological Disorders: A Review vol.11, pp.None, 2015, https://doi.org/10.3389/fneur.2020.00389
  8. Biological models in multiple sclerosis vol.98, pp.3, 2015, https://doi.org/10.1002/jnr.24528
  9. Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases vol.21, pp.24, 2015, https://doi.org/10.3390/ijms21249582
  10. Fibulin 5, a human Wharton's jelly‐derived mesenchymal stem cell s ‐secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin‐RAC1 vol.38, pp.12, 2015, https://doi.org/10.1002/stem.3287
  11. Treatment approaches to patients with multiple sclerosis and coexisting autoimmune disorders vol.14, pp.None, 2015, https://doi.org/10.1177/17562864211035542