DOI QR코드

DOI QR Code

Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution

  • Park, Sang-Je (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Young-Hyun (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Rae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choe, Se-Hee (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Myung-Jin (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Sun-Uk (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Ji-Su (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sim, Bo-Woong (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Song, Bong-Seok (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong, Kang-Jin (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Yeung-Bae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Youngjeon (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Young-Ho (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Young Il (Graduate School Department of Digital Media, Ewha Womans University) ;
  • Huh, Jae-Won (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chang, Kyu-Tae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2015.05.07
  • Accepted : 2015.07.20
  • Published : 2015.11.30

Abstract

BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crabeating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3' splice site. Intriguingly, in rhesus and crabeating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5' splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates.

Keywords

References

  1. Alekseyenko, A.V., Kim, N., and Lee, C.J. (2007). Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA 13, 661-670. https://doi.org/10.1261/rna.325107
  2. Almeida, L.M., Silva, I.T., Silva, W.A., Jr., Castro, J.P., Riggs, P.K., Carareto, C.M., and Amaral, M.E. (2007). The contribution of transposable elements to Bos taurus gene structure. Gene 390, 180-189. https://doi.org/10.1016/j.gene.2006.10.012
  3. Amit, M., Sela, N., Keren, H., Melamed, Z., Muler, I., Shomron, N., Izraeli, S., and Ast, G. (2007). Biased exonization of transposed elements in duplicated genes: a lesson from the TIF-IA gene. BMC Mol. Biol. 8, 109. https://doi.org/10.1186/1471-2199-8-109
  4. Ast, G. (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5, 773-782.
  5. Bandelt, H.J., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  6. Bannert, N., and Kurth, R. (2004). Retroelements and the human genome: new perspectives on an old relation. Proc. Natl. Acad. Sci. USA 101 Suppl 2, 14572-14579. https://doi.org/10.1073/pnas.0404838101
  7. Batzer, M.A., and Deininger, P.L. (2002). Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370-379. https://doi.org/10.1038/nrg798
  8. Carlsson, H.E., Schapiro, S.J., Farah, I., and Hau, J. (2004). Use of primates in research: a global overview. Am. J. Primatol. 63, 225-237. https://doi.org/10.1002/ajp.20054
  9. Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N., and Varki, A. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl. Acad. Sci. USA 99, 11736-11741. https://doi.org/10.1073/pnas.182257399
  10. Corvelo, A., and Eyras, E. (2008). Exon creation and establishment in human genes. Genome Biol. 9, R141. https://doi.org/10.1186/gb-2008-9-9-r141
  11. de Lonlay, P., Valnot, I., Barrientos, A., Gorbatyuk, M., Tzagoloff, A., Taanman, J.W., Benayoun, E., Chretien, D., Kadhom, N., Lombes, A., et al. (2001). A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat. Genet. 29, 57-60. https://doi.org/10.1038/ng706
  12. DeBarry, J.D., Ganko, E.W., McCarthy, E.M., and McDonald, J.F. (2006). The contribution of LTR retrotransposon sequences to gene evolution in Mus musculus. Mol. Biol. Evol. 23, 479-481. https://doi.org/10.1093/molbev/msj076
  13. Deininger, P.L., and Batzer, M.A. (1999) Alu repeats and human disease. Mol. Genet. Metab. 67, 183-193. https://doi.org/10.1006/mgme.1999.2864
  14. Fernandez-Vizarra, E., Bugiani, M., Goffrini, P., Carrara, F., Farina, L., Procopio, E., Donati, A., Uziel, G., Ferrero, I., and Zeviani, M. (2007). Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum. Mol. Genet. 16, 1241-1252. https://doi.org/10.1093/hmg/ddm072
  15. Gal-Mark, N., Schwartz, S., and Ast, G. (2008). Alternative splicing of Alu exons--two arms are better than one. Nucleic Acids Res. 36, 2012-2023. https://doi.org/10.1093/nar/gkn024
  16. Gibbs, R.A., Rogers, J., Katze, M.G., Bumgarner, R., Weinstock, G.M., Mardis, E.R., Remington, K.A., Strausberg, R.L., Venter, J.C., Wilson, R.K., et al. (2007). Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222-234. https://doi.org/10.1126/science.1139247
  17. Gogvadze, E., and Buzdin, A. (2009). Retroelements and their impact on genome evolution and functioning. Cell Mol. Life Sci. 66, 3727-3742. https://doi.org/10.1007/s00018-009-0107-2
  18. Han, K., Konkel, M.K., Xing, J., Wang, H., Lee, J., Meyer, T.J., Huang, C.T., Sandifer, E., Hebert, K., Barnes, E.W., et al. (2007a). Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome. Science 316, 238-240. https://doi.org/10.1126/science.1139462
  19. Han, K., Lee, J., Meyer, T.J., Wang, J., Sen, S.K., Srikanta, D., Liang, P., and Batzer, M.A. (2007b). Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet. 3, 1939-1949.
  20. Hanson, P.I., and Whiteheart, S.W. (2005). AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519-529. https://doi.org/10.1038/nrm1684
  21. Hinson, J.T., Fantin, V.R., Schonberger, J., Breivik, N., Siem, G., McDonough, B., Sharma, P., Keogh, I., Godinho, R., Santos, F., et al. (2007). Missense mutations in the BCS1L gene as a cause of the Bjornstad syndrome. N Engl. J. Med. 356, 809-819. https://doi.org/10.1056/NEJMoa055262
  22. Huh, J.W., Kim, Y.H., Lee, S.R., Kim, H., Kim, D.S., Kim, H.S., Kang, H.S., and Chang, K.T. (2009). Gain of new exons and promoters by lineage-specific transposable elements-integration and conservation event on CHRM3 gene. Mol. Cells 28, 111-117. https://doi.org/10.1007/s10059-009-0106-z
  23. Huh, J.W., Kim, Y.H., Lee, S.R., Kim, D.S., Park, S.J., Kim, H., Kim, J.S., Song, B.S., Kim, H.S., and Chang, K.T. (2010). Four different ways of alternative transcripts generation mechanism in ADRA1A gene. Genes Genet. Syst. 85, 65-73. https://doi.org/10.1266/ggs.85.65
  24. Huh, J.W., Kim, Y.H., Park, S.J., Kim, D.S., Lee, S.R., Kim, K.M., Jeong, K.J., Kim, J.S., Song, B.S., Sim, B.W., et al. (2012). Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genomics 13, 163. https://doi.org/10.1186/1471-2164-13-163
  25. Keren, H., Lev-Maor, G., and Ast, G. (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11, 345-355. https://doi.org/10.1038/nrg2776
  26. Kim, D.S., Huh, J.W., Kim, Y.H., Park, S.J., Lee, S.R., and Chang, K.T. (2010). Full-length cDNA sequences from Rhesus monkey placenta tissue: analysis and utility for comparative mapping. BMC Genomics 11, 427. https://doi.org/10.1186/1471-2164-11-427
  27. Kim, T., Kim, J.O., Oh, J.G., Hong, S.E., and Kim do, H. (2014). Pressure-overload cardiac hypertrophy is associated with distinct alternative splicing due to altered expression of splicing factors. Mol. Cells 37, 81-87. https://doi.org/10.14348/molcells.2014.2337
  28. Kreahling, J., and Graveley, B.R. (2004). The origins and implications of Aluternative splicing. Trends Genet. 20, 1-4. https://doi.org/10.1016/j.tig.2003.11.001
  29. Kumar, S., and Hedges, S.B. (2011). TimeTree2: species divergence times on the iPhone. Bioinformatics 27, 2023-2024. https://doi.org/10.1093/bioinformatics/btr315
  30. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
  31. Lee, J.R., Huh, J.W., Kim, D.S., Ha, H.S., Ahn, K., Kim, Y.J., Chang, K.T., and Kim, H.S. (2009). Lineage specific evolutionary events on SFTPB gene: Alu recombination-mediated deletion (ARMD), exonization, and alternative splicing events. Gene 435, 29-35. https://doi.org/10.1016/j.gene.2009.01.008
  32. Lee, Y., Kim, Y.H., Park, S.J., Huh, J.W., Kim, S.H., Kim, S.U., Kim, J.S., Jeong, K.J., Lee, K.M., Hong, Y., et al. (2014). Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer's disease monkey model induced by intracerebroventricular injection of streptozotocin. J. Alzheimers Dis. 38, 251-267.
  33. Lev-Maor, G., Sorek, R., Shomron, N., and Ast, G. (2003). The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. Science 300, 1288-1291. https://doi.org/10.1126/science.1082588
  34. Li, W.H., Gu, Z., Wang, H., and Nekrutenko, A. (2001). Evolutionary analyses of the human genome. Nature 409, 847-849. https://doi.org/10.1038/35057039
  35. Lin, L., Shen, S., Jiang, P., Sato, S., Davidson, B.L., and Xing, Y. (2010). Evolution of alternative splicing in primate brain transcriptomes. Hum. Mol. Genet. 19, 2958-2973. https://doi.org/10.1093/hmg/ddq201
  36. Lin, L., Shen, S., Tye, A., Cai, J.J., Jiang, P., Davidson, B.L., and Xing, Y. (2008). Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 4, e1000225. https://doi.org/10.1371/journal.pgen.1000225
  37. Pan, Q., Shai, O., Lee, L.J., Frey, B.J., and Blencowe, B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413-1415. https://doi.org/10.1038/ng.259
  38. Park, S.J., Huh, J.W., Kim, Y.H., Kim, H.S., and Chang, K.T. (2012). Intron Retention and TE Exonization Events in ZRANB2. Comp. Funct. Genomics 2012, 170208.
  39. Park, S.J., Kim, Y.H., Huh, J.W., Lee, S.R., Kim, S.H., Kim, S.U., Kim, J.S., Jeong, K.J., Kim, K.M., Kim, H.S., et al. (2013). Selection of new appropriate reference genes for RT-qPCR analysis via transcriptome sequencing of cynomolgus monkeys (Macaca fascicularis). PLoS One 8, e60758. https://doi.org/10.1371/journal.pone.0060758
  40. Park, S.J., Kim, Y.H., Nam, G.H., Choe, S.H., Lee, S.R., Kim, S.U., Kim, J.S., Sim, B.W., Song, B.S., Jeong, K.J., et al. (2015). Quantitative expression analysis of APP pathway and tau phosphorylation-related genes in the ICV STZ-induced non-human primate model of sporadic Alzheimer's disease. Int. J. Mol. Sci. 16, 2386-2402. https://doi.org/10.3390/ijms16022386
  41. Piriyapongsa, J., Polavarapu, N., Borodovsky, M., and McDonald, J. (2007). Exonization of the LTR transposable elements in human genome. BMC Genomics 8, 291. https://doi.org/10.1186/1471-2164-8-291
  42. Schmitz, J., and Brosius, J. (2011). Exonization of transposed elements: A challenge and opportunity for evolution. Biochimie 93, 1928-1934. https://doi.org/10.1016/j.biochi.2011.07.014
  43. Sela, N., Mersch, B., Hotz-Wagenblatt, A., and Ast, G. (2010). Characteristics of transposable element exonization within human and mouse. PLoS One 5, e10907. https://doi.org/10.1371/journal.pone.0010907
  44. Snider, J., and Houry, W.A. (2008). AAA+ proteins: diversity in function, similarity in structure. Biochem. Soc. Trans. 36, 72-77. https://doi.org/10.1042/BST0360072
  45. Sorek, R., Ast, G., and Graur, D. (2002). Alu-containing exons are alternatively spliced. Genome Res. 12, 1060-1067. https://doi.org/10.1101/gr.229302
  46. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  47. Tucker, P.A., and Sallai, L. (2007). The AAA+ superfamily--a myriad of motions. Curr. Opin. Struct. Biol. 17, 641-652. https://doi.org/10.1016/j.sbi.2007.09.012
  48. Visapaa, I., Fellman, V., Vesa, J., Dasvarma, A., Hutton, J.L., Kumar, V., Payne, G.S., Makarow, M., Van Coster, R., Taylor, R.W., et al. (2002). GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am. J. Hum. Genet. 71, 863-876. https://doi.org/10.1086/342773
  49. Wagener, N., and Neupert, W. (2012). Bcs1, a AAA protein of the mitochondria with a role in the biogenesis of the respiratory chain. J. Struct. Biol. 179, 121-125. https://doi.org/10.1016/j.jsb.2012.04.019

Cited by

  1. Identification and Expression of Equine MER-Derived miRNAs vol.40, pp.4, 2017, https://doi.org/10.14348/molcells.2017.2295
  2. Identification and characterization of the tyrosinase gene ( TYR ) and its transcript variants ( TYR_1 and TYR_2 ) in the crab-eating macaque ( Macaca fascicularis ) vol.630, 2017, https://doi.org/10.1016/j.gene.2017.07.047
  3. Coding Regions of Intrinsic Disorder Accommodate Parallel Functions vol.41, pp.11, 2016, https://doi.org/10.1016/j.tibs.2016.08.009
  4. Identification of Alternative Variants and Insertion of the Novel PolymorphicAluYl17inTSEN54Gene during Primate Evolution vol.2016, 2016, https://doi.org/10.1155/2016/1679574
  5. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein vol.6, pp.1, 2016, https://doi.org/10.1038/srep30778
  6. Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene vol.40, pp.2, 2015, https://doi.org/10.14348/molcells.2017.2204
  7. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat ( Triticum turgidum ssp. dicoccoides ) vol.17, pp.1, 2015, https://doi.org/10.1186/s12870-017-1134-z
  8. Successful application of human-based methyl capture sequencing for methylome analysis in non-human primate models vol.19, pp.None, 2015, https://doi.org/10.1186/s12864-018-4666-1
  9. Novel Discovery of LINE-1 in a Korean Individual by a Target Enrichment Method vol.42, pp.1, 2019, https://doi.org/10.14348/molcells.2018.0351
  10. Cooperative evolution of two different TEs results in lineage-specific novel transcripts in the BLOC1S2 gene vol.19, pp.1, 2015, https://doi.org/10.1186/s12862-019-1530-0
  11. Sense-oriented Alu YRa1 elements provide a lineage-specific transcription environment for polyadenylation vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-83360-4