DOI QR코드

DOI QR Code

Can Cancer Therapy be Achieved by Bridging Apoptosis and Autophagy: a Method Based on microRNA-Dependent Gene Therapy and Phytochemical Targets

  • Vijayarathna, Soundararajan (Institute for Research in Molecular Medicine, Universiti Sains Malaysia) ;
  • Gothai, Sivapragasam (Institute for Research in Molecular Medicine, Universiti Sains Malaysia) ;
  • Jothy, Subramanion L (Institute for Research in Molecular Medicine, Universiti Sains Malaysia) ;
  • Chen, Yeng (Dental Research & Training Unit, and Oral Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya) ;
  • Kanwar, Jagat R (Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Faculty of Health, Institute for Frontier Materials, Deakin University) ;
  • Sasidharan, Sreenivasan (Institute for Research in Molecular Medicine, Universiti Sains Malaysia)
  • Published : 2015.12.03

Abstract

A failure of a cell to self destruct has long been associated with cancer progression and development. The fact that tumour cells may not instigate cell arrest or activate cell death mechanisms upon cancer drug delivery is a major concern. Autophagy is a mechanism whereby cell material can be engulfed and digested while apoptosis is a self-killing mechanism, both capable of hindering multiplication after cell injury. In particular situations, autophagy and apoptosis seem to co-exist simultaneously or interdependently with the aid of mutual proteins. This review covers roles of microRNAs and chemopreventive agents and makes an attempt at outlining possible partnerships in maximizing cancer cell death with minimal normal cell damage.

Keywords

References

  1. Aggarwal BB, Shishodia S (2006). Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol, 71, 1397-421. https://doi.org/10.1016/j.bcp.2006.02.009
  2. Alkhalaf M, El-Mowafy A, Renno W, et al (2007). Resveratrolinduced apoptosis in human breast cancer cells is mediated primarily through the caspase-3-dependent pathway. Arch Med Res, 39, 162-8.
  3. Bommareddy A, Hahm ER, Xiao D, et al (2009). Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res, 69, 3704-12. https://doi.org/10.1158/0008-5472.CAN-08-4344
  4. Boonyarat C, Yenjai C, Vajragupta O, Waiwut P (2014). Heptaphylline induces apoptosis in human colon adenocarcinoma cells through bid and Akt/NF-${\kappa}B$ (p65) pathways. Asian Pac J Cancer Prev, 15, 10483-7.
  5. Chu SC, Hsieh YS, Yu CC, Lai YY, Chen PN (2014). Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One, 9, 101579. https://doi.org/10.1371/journal.pone.0101579
  6. Cimmino A, Calin GA, Fabbri M, et al (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA, 102, 13944-9. https://doi.org/10.1073/pnas.0506654102
  7. Feng Z, Zhang C, Wu R, Hu W (2011). Tumor suppressor p53 meets microRNAs. J Mol Cell Biol, 3, 44-50. https://doi.org/10.1093/jmcb/mjq040
  8. Happo L, Strasser A, Cory S (2012). BH3- only proteins in apoptosis at a glance. J Cell Sci, 125, 1081-7. https://doi.org/10.1242/jcs.090514
  9. Ichimura Y, Kirisako T, Takao T, et al (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408, 488-92. https://doi.org/10.1038/35044114
  10. Jiang L, Chang J, Zhang Q, Sun L, Qiu X (2013). MicroRNA hsa-miR-125a-3p activates p53 and induces apoptosis in lung cancer cells. Cancer Invest, 31, 538-44. https://doi.org/10.3109/07357907.2013.820314
  11. Kaewpangchan P, Cheewakriangkrai C (2015). Relapse patterns and outcomes following recurrence of endometrial cancer in northern Thaiwomen. Asian Pac J Cancer Prev, 16, 3861-6. https://doi.org/10.7314/APJCP.2015.16.9.3861
  12. Kavitha N, Vijayarathna S, Jothy SL, et al (2014). MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancerdiagnosis and prognosis. Asian Pac J Cancer Prev, 15, 7489-97. https://doi.org/10.7314/APJCP.2014.15.18.7489
  13. Kim AD, Kang KA, Kim HS, et al (2013). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 1, 750.
  14. Kole AJ, Shahari V, Hammond SM, Deshmukh M (2011). miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Deve, 25, 125-30. https://doi.org/10.1101/gad.1975411
  15. Lee JW, Kim KS, An HK, et al (2013). Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances Dendropanoxide-Induced apoptosis. PLoS One, 8, 83611. https://doi.org/10.1371/journal.pone.0083611
  16. Liang XH, Jackson S, Seaman M, et al (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672-6. https://doi.org/10.1038/45257
  17. Luo GX, Cai J, Lin JZ, et al (2012). Autophagy inhibition promotes gambogic acid-induced suppression of growth and apoptosis inglioblastoma cells. Asian Pac J Cancer Prev, 13, 6211-6. https://doi.org/10.7314/APJCP.2012.13.12.6211
  18. Luo XJ, Li LJ, Deng QP, et al (2011). Grifolin, a potent antitumor natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur J Cancer, 47, 316-25. https://doi.org/10.1016/j.ejca.2010.09.021
  19. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014). Self- consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell, 15, 81-94. https://doi.org/10.1038/nrm3735
  20. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014). Autophagy and apoptosis : where do they meet? Apoptosis, 19, 555-66. https://doi.org/10.1007/s10495-014-0967-2
  21. Mukhtar E, Adhami VM, Khan N, Mukhtar H (2012). Apoptosis and autophagy induction as mechanism of cancer prevention by naturally occurring dietary agents. Curr Drug Targets, 13, 1831-41. https://doi.org/10.2174/138945012804545489
  22. Puissant A, Robert G, Fenouille N, et al (2010). Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res, 70, 1042-52. https://doi.org/10.1158/0008-5472.CAN-09-3537
  23. Singh R, Saini N (2012). Downregulation of BCL2 by miRNAs augments drug-induced apoptosis- a combined computational and experimental approach. J Cell Sci, 15, 1568-78.
  24. Verdoodt B, Neid M, Vogt M, et al (2013). MicroRNA- 205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. Int J Oncol, 43, 307-14. https://doi.org/10.3892/ijo.2013.1915
  25. Wan SM, Lv F, Guan T (2012). Identification of genes and microRNAs involved in ovarian carcinogenesis. Asian Pac J Cancer Prev, 13, 3997-4000. https://doi.org/10.7314/APJCP.2012.13.8.3997
  26. Xavier CP, Lima CF, Pedro DF, et al (2013). Ursolic acid induces cell death and modulates autophagy through JNK pathway in apoptosis-resistant colorectal cancer cells. J Nutr Biochem, 24, 706-12. https://doi.org/10.1016/j.jnutbio.2012.04.004
  27. Yousefi S, Perozzo R, Schmid I, et al (2006). Calpain-mediated cleavage of Atg 5 switches autophagy to apoptosis. Nat Cell Biol, 8, 1124-32. https://doi.org/10.1038/ncb1482
  28. Zhang C, Yang L, Wang XB, (2013). Calyxin Y induces hydrogen peroxide-dependent autophagy and apoptosis via JNK activation in human non-small cell lung cancer NCI-H460 cells. Cancer Letters, 340, 51-62. https://doi.org/10.1016/j.canlet.2013.06.021
  29. Zhang T, Li Y, Park KA, et al (2012). Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy, 8, 559-76. https://doi.org/10.4161/auto.18867
  30. Zhao A, Zeng Q, Xie X, et al (2012). MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression. J Genet Genomics, 39, 29-35. https://doi.org/10.1016/j.jgg.2011.12.003
  31. Zhou J, Hu H, Long J, et al (2013). Vitexin 6, a novel lignin, induces autophagy and apoptosis by activating the Jun N-terminal kinase pathway. Anti-cancer Drugs, 24, 928-36. https://doi.org/10.1097/CAD.0b013e328364e8d3
  32. Zhu H, Wu H, Liu X, et al (2009). Regulation of autophagy by a beclin-1 targeted microRNA, miR-30a, in cancer cells. Autophagy, 5, 816-23. https://doi.org/10.4161/auto.9064

Cited by

  1. miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug vol.37, pp.6, 2016, https://doi.org/10.1007/s13277-015-4665-7