DOI QR코드

DOI QR Code

Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power

  • Kim, Deok Kyu (Advanced Development Team, Samsung Electronics Co. Ltd.) ;
  • Kim, Hong Bae (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2015.10.11
  • Accepted : 2015.10.20
  • Published : 2015.11.30

Abstract

ZnO:Ga thin films were deposited by RF magnetron sputtering technique from ZnO (3 wt.% $Ga_2O_3$) target onto glass substrates under various RF power. The influence of RF power on the structural, electrical, and optical properties of ZnO:Ga thin films was investigated by X-ray diffraction, atomic force microscopy, Hall method and optical transmission spectroscopy. As the RF power increases from 50 to 110W, the crystallinity is deteriorated, the root main square surface roughness is decreased and the sheet resistance is increased. The increase of sheet resistance is caused by decreasing carrier concentration due to interstitial Ga ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a red-shift with increasing RF power.

Keywords

References

  1. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett. 83, 7875 (2003).
  2. J. Muller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004). https://doi.org/10.1016/j.solener.2004.03.015
  3. T. Minami, S. Takata, and T. Kakumu, J. Vac. Sci. Technol. A 14, 1689 (1996). https://doi.org/10.1116/1.580320
  4. M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura, J. Non-Crystalline Solids 218, 323 (1997). https://doi.org/10.1016/S0022-3093(97)00241-X
  5. R. K. Shukla, A. Srivastava, A. Srivastava, K.C. Dubey, J. Crystal Growth 294, 427 (2006). https://doi.org/10.1016/j.jcrysgro.2006.06.035
  6. V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, R. Martins, Thin Solid Films 427, 401 (2003). https://doi.org/10.1016/S0040-6090(02)01184-7
  7. M. S. M. Saifullah, K. R. V. Subramanian, D. J. Kang, D. Anderson, W. T. S. Huck, G. A. C. Jones, and M. E. Welland, Adv. Mater. 17, 1757 (2005). https://doi.org/10.1002/adma.200500484
  8. C. S. Son, Korean J. Mater. Res. 21, 3 (2011).
  9. J. K. Kim, S. J. Yun, J. M. Lee, J. W. Lim, Curr. Appl. Phys. 10, S451 (2010). https://doi.org/10.1016/j.cap.2010.01.008
  10. Y. H. Joung, J. S. Kang, J. Korean Inst. Info. Commu. Eng. 18, 2497 (2014). https://doi.org/10.6109/jkiice.2014.18.10.2497
  11. A. Mosbah, and M. S. Aida, J. Alloys Compd. 515, 149 (2012). https://doi.org/10.1016/j.jallcom.2011.11.113
  12. H. Kumarakuru, D. Cherns, and G. M. Fuge, Surf. Coat. Technol. 205, 5083 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.011
  13. P. Baneerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys. 108, 043504 (2010). https://doi.org/10.1063/1.3466987
  14. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, Superlattices Microstruct. 49, 644 (2011). https://doi.org/10.1016/j.spmi.2011.04.002
  15. W. Yang, Z. Wu, Z. Liu, A. Pang, Y. L. Tu, and Z. C. Feng, Thin Solid Films 519, 31 (2010). https://doi.org/10.1016/j.tsf.2010.07.048
  16. J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci. 257, 2731 (2011). https://doi.org/10.1016/j.apsusc.2010.10.053
  17. C. Guillen, and J. Herrero, Surf. Coat. Technol. 201, 309 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.114
  18. J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci. 257, 2731 (2011). https://doi.org/10.1016/j.apsusc.2010.10.053
  19. G. Haake, J. Appl. Phys. 47, 4086 (1976). https://doi.org/10.1063/1.323240

Cited by

  1. Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power vol.42, pp.15, 2016, https://doi.org/10.1016/j.ceramint.2016.08.091