DOI QR코드

DOI QR Code

Initial growth mode of ultra-thin Al films on a W(110) surface at high temperatures

  • Choi, Dae Sun (Department of Physics, Kangwon National University) ;
  • Park, Mi Mi (Department of Physics, Kangwon National University)
  • Received : 2015.11.09
  • Accepted : 2015.11.20
  • Published : 2015.11.30

Abstract

We investigated the adsorption structures and the initial growth mode of ultra-thin Al films on a W(110) surface at a high temperature. When Al atoms were adsorbed on the W(110) at the substrate temperature of 1100 K and with coverage of 0.5ML, Al atoms formed a p($2{\times}1$) double-domain structure. When the coverage was 1.0 ML, the double domain of a hexagonal structure (fcc(111) face) rotated ${\pm}5^{\circ}$ from the [100] direction of the W(110) surface and another distorted hexagonal structure were found. Low-energy electron diffraction results along with ion scattering spectroscopy results showed that the Al atoms followed the Volmer-Weber growth mode at a high temperature.

Keywords

References

  1. B.I. Birajdar, S.V. Shende, and D.S. Joag, Surf. Sci. 505, 285 (2002). https://doi.org/10.1016/S0039-6028(02)01318-3
  2. M. Trzcinski, A. Bukaluk, M. Burgener, and A. Goldmann, Surface Science 589, 192 (2005). https://doi.org/10.1016/j.susc.2005.05.054
  3. Th. Duden, R. Zdyb, M.S. Altman, and E. Bauer, Surf. Sci. 480, 145 (2001). https://doi.org/10.1016/S0039-6028(01)00829-9
  4. J. Kotaczkiewicz, E. Bauer, Surf. Sci. 366, 71 (1996). https://doi.org/10.1016/0039-6028(96)00787-X
  5. J. Kotaczkiewicz, E. Bauer, Surf. Sci. 256, 87 (1991). https://doi.org/10.1016/0039-6028(91)91202-9
  6. M.A.J. Allen and D. Venus, Surf. Sci. 477, 209 (2001). https://doi.org/10.1016/S0039-6028(01)00773-7
  7. K. Reshoft, C. Jensen, and U. Kohler, Surf. Sci. 421, 320 (1999). https://doi.org/10.1016/S0039-6028(98)00859-0
  8. P. D. Augustus and J.P. Jones, Surf. Sci. 64, 713 (1977). https://doi.org/10.1016/0039-6028(77)90073-5
  9. H. Gollisch, Surf Sci. 175, 249 (1986). https://doi.org/10.1016/0039-6028(86)90234-7
  10. T. Engel, P. Bornemann, and E. Bauer, Surf. Sci. 81, 252 (1979). https://doi.org/10.1016/0039-6028(79)90516-8
  11. A. Hitzkea, J. Günster, J. Koaczkiewiczb, V. Kemptera, Surf. Sci. 318, 139 (1994). https://doi.org/10.1016/0039-6028(94)90349-2
  12. E. Koetter, D. Drakova, and G. Doyen, Surf. Sci. 331-333, 679 (1995). https://doi.org/10.1016/0039-6028(95)00163-8
  13. D. S. Choi and D. H. Kim, Thin Solid Films, 520, 6012 (2012). https://doi.org/10.1016/j.tsf.2012.05.020
  14. D. S. Choi and D. H. Kim, Modern Phys, Lett. B, 23, 835 (2009). https://doi.org/10.1142/S0217984909019090
  15. L. R. Clavenna and L. D. Schmidt, Surf. Sci. 22, 365 (1970). https://doi.org/10.1016/0039-6028(70)90089-0
  16. A. Zangwill, Physics at Surface, (Cambridge, New York, 1988), p. 428.
  17. D. S. Choi, R. Gomer, Surf. Sci. 230, 277 (1990). https://doi.org/10.1016/0039-6028(90)90035-7
  18. N. Moslemzadeh, S. D. Barrett, and J. Ledieu, Phys. Rev. B. 66, 033403 (2002).
  19. Kh. Zakeri, T.R.F. Peixoto, Y. Zhang, J. Prokop, and J. Kirschner, Surf. Sci. Lett. 604, L1 (2010). https://doi.org/10.1016/j.susc.2009.10.020
  20. M. Bode, R. Pascal, and R. Wisendanger, Surf. Sci. 334, 185 (1995).
  21. G. L. Cassiday and G.R. Fowles, Analytical Mechanics, 6th ed. (Thomson, 1999), chapter 6.
  22. P.W. Tamm and L.D. Schmidt, J. Chem Phys. 51, 5352 (1969). https://doi.org/10.1063/1.1671956